Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:38:22.749Z Has data issue: false hasContentIssue false

Identification of proteins for controlled nucleation of metal-organic crystals for nanoenergetics

Published online by Cambridge University Press:  24 April 2019

Zachary E. Reinert
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA UES Inc., Dayton, Ohio 45432, USA
Chia-Suei Hung
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Andrea R. Poole
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA UES Inc., Dayton, Ohio 45432, USA
Joseph M. Slocik
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA UES Inc., Dayton, Ohio 45432, USA
Marquise G. Crosby
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Srikanth Singamaneni
Affiliation:
Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130, USA
Rajesh R. Naik
Affiliation:
711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Patrick B. Dennis
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Wendy J. Crookes-Goodson
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Maneesh K. Gupta*
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
*
Address all correspondence to Maneesh K. Gupta at maneesh.gupta.2@us.af.mil
Get access

Abstract

Here, we report that a marine sandworm Nereis virens jaw protein, Nvjp1, nucleates hemozoin with similar activity as the native parasite hemozoin protein, HisRPII. X-ray diffraction and scanning electron microscopy confirm the identity of the hemozoin produced from Nvjp1-containing reactions. Finally, we observed that nAl assembled with hemozoin from Nvjp1 reactions has a substantially higher energetic output when compared to analogous thermite from the synthetic standard or HisRPII-nucleated hemozoin. Our results demonstrate that a marine sandworm protein can nucleate malaria pigment and set the stage for engineering recombinant hemozoin production for nanoenergetic applications.

Type
Synthetic Biology Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., and Sterrenburg, F.A.S.: The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 27, 116127 (2009).Google Scholar
2.Hildebrand, M. and Lerch, S.J.L.: Diatom silica biomineralization: parallel development of approaches and understanding. Semin. Cell Dev. Biol. 46, 2735 (2015).Google Scholar
3.Kotzsch, A., Gröger, P., Pawolski, D., Bomans, P.H.H., Sommerdijk, N.A.J.M., Schlierf, M., and Kröger, N.: Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol. 15, 65 (2017).Google Scholar
4.Vrieling, E.G., Beelen, T.P.M., Van Santen, R.A., and Gieskes, W.W.C.: Diatom silicon biomineralization as an inspirational source of new approaches to silica production. J. Biotechnol. 70, 3951 (1999).Google Scholar
5.Corra, S., Shoshan, M.S., and Wennemers, H.: Peptide mediated formation of noble metal nanoparticles—controlling size and spatial arrangement. Curr. Opin. Chem. Biol. 40, 138144 (2017).Google Scholar
6.Liu, J., Wang, Z., Zeng, J., and Heinz, H.: Molecular structure and assembly of peptide-derived nanomaterials. Curr. Opin. Green. Sustain. Chem. 12, 3846 (2018).Google Scholar
7.Merrill, N.A., Yan, F., Jin, H., Mu, P., Chen, C.-L., and Knecht, M.R.: Tunable assembly of biomimetic peptoids as templates to control nanostructure catalytic activity. Nanoscale 10, 1244512452 (2018).Google Scholar
8.Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G.: DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775 (1998).Google Scholar
9.Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and Labean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 18821884 (2003).Google Scholar
10.Glavier, L., Taton, G., Ducéré, J.-M., Baijot, V., Pinon, S., Calais, T., Estève, A., Djafari Rouhani, M., and Rossi, C.: Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE. Combust. Flame 162, 18131820 (2015).Google Scholar
11.Rossi, C.: Two decades of research on nano-energetic materials. Prop. Explos. Pyrot. 39, 323327 (2014).Google Scholar
12.Zhou, X., Torabi, M., Lu, J., Shen, R., and Zhang, K.: Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 6, 30583074 (2014).Google Scholar
13.Sundaram, D.S., Yang, V., and Zarko, V.E.: Combustion of nano aluminum particles (Review). Comb. Explos. Shock 51, 173196 (2015).Google Scholar
14.Dreizin, E.L.: Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35, 141167 (2009).Google Scholar
15.Jian, G., Feng, J., Jacob, R.J., Egan, G.C., and Zachariah, M.R.: Super-reactive nanoenergetic gas generators based on periodate salts. Angew. Chem. Int. Ed., 52, 97439746 (2013).Google Scholar
16.Klapötke, T.M., Steemann, F.X., and Suceska, M.: Binary flash compositions––a theoretical and practical study. Prop. Explos. Pyrot. 38, 2934 (2013).Google Scholar
17.Patel, V.K. and Bhattacharya, S.: High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. ACS Appl. Mater. Interfaces 5, 1336413374 (2013).Google Scholar
18.Calais, T., Bancaud, A., Estève, A., and Rossi, C.: Correlation between DNA self-assembly kinetics, microstructure, and thermal properties of tunable highly energetic Al–CuO nanocomposites for micropyrotechnic applications. ACS Appl. Nano Mater. 1, 47164725 (2018).Google Scholar
19.Séverac, F., Alphonse, P., Estève, A., Bancaud, A., and Rossi, C.: High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv. Funct. Mater. 22, 323329 (2012).Google Scholar
20.Slocik, J.M., Crouse, C.A., Spowart, J.E., and Naik, R.R.: Biologically tunable reactivity of energetic nanomaterials using protein cages. Nano Lett. 13, 25352540 (2013).Google Scholar
21.Slocik, J.M., Drummy, L.F., Dickerson, M.B., Crouse, C.A., Spowart, J.E., and Naik, R.R.: Bioinspired high-performance energetic materials using heme-containing crystals. Small 11, 35393544 (2015).Google Scholar
22.Coronado, L.M., Nadovich, C.T., and Spadafora, C.: Malarial hemozoin: from target to tool. Biochim. Biophys. Acta 1840, 20322041 (2014).Google Scholar
23.Chugh, M., Sundararaman, V., Kumar, S., Reddy, V.S., Siddiqui, W.A., Stuart, K.D., and Malhotra, P.: Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Nat. Acad. Sci. 110, 53925397 (2013).Google Scholar
24.Jani, D., Nagarkatti, R., Beatty, W., Angel, R., Slebodnick, C., Andersen, J., Kumar, S., and Rathore, D.: HDP—a novel heme detoxification protein from the malaria parasite. PLoS Pathog. 4, e1000053 (2008).Google Scholar
25.Sullivan, D.J., Gluzman, I.Y., and Goldberg, D.E.: Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 271, 219222 (1996).Google Scholar
26.Ziegler, J., Chang, R.T., and Wright, D.W.: Multiple-antigenic peptides of histidine-rich protein II of plasmodium falciparum: dendrimeric biomineralization templates. J. Am. Chem. Soc. 121, 23952400 (1999).Google Scholar
27.Nakatani, K., Ishikawa, H., Aono, S., and Mizutani, Y.: Identification of essential histidine residues involved in heme binding and hemozoin formation in heme detoxification protein from plasmodium falciparum. Sci. Rep. 4, 6137 (2014).Google Scholar
28.Jaramillo, M., Bellemare, M.-J., Martel, C., Shio, M.T., Contreras, A.P., Godbout, M., Roger, M., Gaudreault, E., Gosselin, J., Bohle, D.S., and Olivier, M.: Synthetic plasmodium-like hemozoin activates the immune response: a morphology––function study. PLoS ONE 4, e6957 (2009).Google Scholar
29.Lynn, A., Chandra, S., Malhotra, P., and Chauhan, V.S.: Heme binding and polymerization by Plasmodium falciparum histidine rich protein II: influence of pH on activity and conformation. FEBS Lett. 459, 267271 (1999).Google Scholar
30.Nalluri, S.K.M., Shivarova, N., Kanibolotsky, A.L., Zelzer, M., Gupta, S., Frederix, P.W.J.M., Skabara, P.J., Gleskova, H., and Ulijn, R.V.: Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene-appended dipeptides. Langmuir. 30, 1242912437 (2014).Google Scholar
31.Pappas, C.G., Shafi, R., Sasselli, I.R., Siccardi, H., Wang, T., Narang, V., Abzalimov, R., Wijerathne, N., and Ulijn, R.V.: Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotech. 11, 960 (2016).Google Scholar
32.Hahn, M.E. and Gianneschi, N.C.: Enzyme-directed assembly and manipulation of organic nanomaterials. Chem. Commun. 47, 1181411821 (2011).Google Scholar
33.Krajina, B.A., Proctor, A.C., Schoen, A.P., Spakowitz, A.J., and Heilshorn, S.C.: Biotemplated synthesis of inorganic materials: an emerging paradigm for nanomaterial synthesis inspired by nature. Prog. Mater Sci. 91, 123 (2018).Google Scholar
34.Broomell, C.C., Chase, S.F., Laue, T., and Waite, J.H.: Cutting edge structural protein from the jaws of Nereis virens. Biomacromolecules 9, 16691677 (2008).Google Scholar
35.Chou, C.-C., Martin-Martinez, F.J., Qin, Z., Dennis, P.B., Gupta, M.K., Naik, R.R., and Buehler, M.J.: Ion effect and metal-coordinated cross-linking for multiscale design of Nereis Jaw inspired mechanomutable materials. ACS Nano. 11, 18581868 (2017).Google Scholar
36.Gupta, M.K., Becknell, K.A., Crosby, M.G., Bedford, N.M., Wright, J., Dennis, P.B., and Naik, R.R.: Programmable mechanical properties from a worm jaw-derived biopolymer through hierarchical ion exposure. ACS Appl. Mater. Interfaces 10, 3192831937 (2018).Google Scholar
37.Kim, D.E., Chivian, D., and Baker, D.: Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526W531 (2004).Google Scholar
38.Kelly, S.M., Jess, T.J., and Price, N.C.: How to study proteins by circular dichroism. Biochim. Biophys. Acta, 1751, 119139 (2005).Google Scholar
39.Egan, T.J., Mavuso, W.W., and Ncokazi, K.K.: The mechanism of β-hematin formation in acetate solution. Parallels between hemozoin formation and biomineralization processes. Biochemistry 40, 204213 (2001).Google Scholar
40.D'aquino, J.A., Gómez, J., Hilser, V.J., Lee, K.H., Amzel, L.M., and Freire, E.: The magnitude of the backbone conformational entropy change in protein folding. Proteins: Struct. Funct. Bioinf. 25, 143156 (1996).Google Scholar
Supplementary material: File

Reinert et al. supplementary material

Reinert et al. supplementary material 1

Download Reinert et al. supplementary material(File)
File 221.9 KB