Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T22:34:39.721Z Has data issue: false hasContentIssue false

Ice-templated silicon foams with aligned lamellar channels

Published online by Cambridge University Press:  08 November 2017

Fernando L. Reyes Tirado
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208, USA
Jiaxing Huang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208, USA
David C. Dunand*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208, USA
*
Address all correspondence to David C. Dunand at dunand@northwestern.edu
Get access

Abstract

An aqueous suspension of 5 vol% silicon (Si) nanoparticles was directionally solidified at substrate temperatures between −10 and −25 °C, resulting in colonies of aligned pure ice dendrites separated by interdendritic Si particles packed walls. Channels are created by sublimation of the dendrites, and the surrounding Si walls are densified by sintering. The resulting Si foams exhibit a 76 ± 2% macroporosity, with the width of the ice-templated channels and the Si walls decreasing with solidification temperature, from 106 to 60 µm and from 34 to 17 µm, respectively. Si walls show high surface roughness from inverse templating of short secondary ice dendrite arms.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deville, S.: Freezing Colloids: Observations, Principles, Control, and Use (Springer International Publishing, Cham, 2017).Google Scholar
2. Liu, R., Xu, T., and an Wang, C.: A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 42, 2907 (2015).CrossRefGoogle Scholar
3. Scotti, K.L., Northard, E.E., Plunk, A., Tappan, B.C., and Dunand, D.C.: Directional solidification of aqueous TiO2 suspensions under reduced gravity. Acta Mater. 124, 608 (2017).CrossRefGoogle Scholar
4. Deville, S.: Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).Google Scholar
5. Jo, H., Kim, M.J., Choi, H., Sung, Y.-E., Choe, H., and Dunand, D.C.: Morphological study of directionally freeze-cast nickel foams. Metall. Mater. Trans. E 3, 46 (2016).Google Scholar
6. Sepúlveda, R., Plunk, A.A., and Dunand, D.C.: Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Mater. Lett. 142, 56 (2015).Google Scholar
7. Chino, Y., and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).Google Scholar
8. Plunk, A.A., and Dunand, D.C.: Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Mater. Lett. 191, 112 (2017).CrossRefGoogle Scholar
9. Park, H., Choi, M., Choe, H., and Dunand, D.C.: Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Mater. Sci. Eng. A 679, 435 (2017).Google Scholar
10. Röthlisberger, A., Häberli, S., Spolenak, R., and Dunand, D.C.: Synthesis, structure and mechanical properties of ice-templated tungsten foams. J. Mater. Res. 31, 753 (2016).Google Scholar
11. Schoof, H., Bruns, L., Fischer, A., Heschel, I., and Rau, G.: Dendritic ice morphology in unidirectionally solidified collagen suspensions. J. Cryst. Growth 209, 122 (2000).Google Scholar
12. Deville, S.: Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials (Basel) 3, 1913 (2010).Google Scholar
13. Hu, H.L., Zeng, Y.P., Xia, Y.F., Yao, D.X., and Zuo, K.H.: High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Mater. Lett. 133, 285 (2014).CrossRefGoogle Scholar
14. Kim, D.S., and Kim, D.K.: Hierarchical structure of porous silicon nitride ceramics with aligned pore channels prepared by ice-templating and nitridation of silicon powder. Int. J. Appl. Ceram. Technol. 12, 921 (2015).CrossRefGoogle Scholar
15. Ge, M., Fang, X., Rong, J., and Zhou, C.: Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24, 422001 (2013).Google Scholar
16. Yoo, J.-K., Kim, J., Lee, H., Choi, J., Choi, M.-J., Sim, D.M., Jung, Y.S., and Kang, K.: Porous silicon nanowires for lithium rechargeable batteries. Nanotechnology 24, 424008 (2013).CrossRefGoogle ScholarPubMed
17. Glazer, M.P.B., Cho, J., Almer, J., Okasinski, J., Braun, P.V., and Dunand, D.C.: In operando strain measurement of bicontinuous silicon-coated nickel inverse opal anodes for Li-ion batteries. Adv. Energy Mater. 5, 1 (2015).Google Scholar
18. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).Google Scholar
19. Jang, H.D., Kim, H., Chang, H., Kim, J., Roh, K.M., Choi, J.-H., Cho, B.-G., Park, E., Kim, H., Luo, J., and Huang, J.: Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci. Rep. 5, 9431 (2015).Google Scholar
20. Jang, H.D., Kim, H., Kil, D.S., and Chang, H.: A Novel recovery of silicon nanoparticles from a waste silicon sludge. J. Nanosci. Nanotechnol. 13, 2334 (2013).CrossRefGoogle ScholarPubMed
21. Seuba, J., Deville, S., Guizard, C., and Stevenson, A.J.: Gas permeability of ice-templated, unidirectional porous ceramics. Sci. Technol. Adv. Mater. 17, 313 (2016).CrossRefGoogle ScholarPubMed
22. Lebrun, J.M., Sassi, A., Pascal, C., and Missiaen, J.M.: Densification and microstructure evolution during sintering of silicon under controlled water vapor pressure. J. Eur. Ceram. Soc. 33, 2993 (2013).Google Scholar
23. Yin, L., Zhou, X., Yu, J., and Wang, H.: Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method. Ceram. Int. 42, 1713 (2016).Google Scholar
24. Xia, Y., Zeng, Y.-P., and Jiang, D.: Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Mater. Des. 33, 98 (2012).Google Scholar
25. Shan, S.-Y., Yang, J.-F., Gao, J.-Q., Zhang, W.-H., Jin, Z.-H., Janssen, R., and Ohji, T.: Porous silicon nitride ceramics prepared by reduction-nitridation of silica. J. Am. Ceram. Soc. 88, 2594 (2005).Google Scholar
26. de Moraes, E.G., and Colombo, P.: Silicon nitride foams from emulsions. Mater. Lett. 128, 128 (2014).Google Scholar
27. Ollivier, M., Latu-Romain, L., and Latu-Romain, E.: Growth of a 3C-SiC layer by carburization of silicon nanopillars. Mater. Lett. 141, 263 (2015).CrossRefGoogle Scholar
28. Naglieri, V., Bale, H.A., Gludovatz, B., Tomsia, A.P., and Ritchie, R.O.: On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Mater. 61, 6948 (2013).Google Scholar
29. Chen, Y., and Chung, D.D.L.: Silicon-aluminium network composites fabricated by liquid metal infiltration. J. Mater. Sci. 29, 6069 (1994).Google Scholar
30. Röthlisberger, A., Häberli, S., Galinski, H., Dunand, D.C., and Spolenak, R.: Ice-templated W-Cu composites with high anisotropy. arXiv:1708.06801 cond-mat. mtrl-sci. 1 (2017).Google Scholar