Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T23:20:59.174Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals

Published online by Cambridge University Press:  28 August 2019

Wei Cui
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China School of Materials Sciences and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
Shaogang Wang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China School of Materials Sciences and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
Rui Yang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China School of Materials Sciences and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
Xing Zhang*
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China School of Materials Sciences and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
*
Address all correspondence to Xing Zhang at xingzhang@imr.ac.cn
Get access

Abstract

In this study, Mg-substituted tricalcium phosphate (Mg-TCP) nanoparticles were synthesized by hydrothermal reactions of Mg-calcite mesocrystals from echinoderm skeletons. Following the biomineralization of echinoderms, Mg-calcite powder was synthesized via the solid-state transition of Mg-amorphous calcium carbonate prepared by a wet-chemical precipitation method, which can also be used to fabricate Mg-TCP. We illustrated that Mg-calcite with a certain level of Mg substitution led to the formation of Mg-TCP through the ion-exchange reactions in the hydrothermal system. Therefore, this study provides a new pathway for the synthesis of Mg-TCP nanoparticles.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Seto, J., Ma, Y., Davis, S.A., Meldrum, F., Gourrier, A., Kim, Y.-Y., Schilde, U., Sztucki, M., Burghammer, M., Maltsev, S., Jager, C., and Colfen, H.: Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl Acad. Sci. USA 109, 3699 (2012).Google Scholar
2.Cao, L., Li, X., Zhou, X., Li, Y., Vecchio, K.S., Yang, L., Cui, W., Yang, R., Zhu, Y., Guo, Z., and Zhang, X.: Lightweight open-cell scaffolds from sea urchin spines with superior material properties for bone defect repair. ACS Appl. Mater. Inter. 9, 9862 (2017).Google Scholar
3.Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L.: Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161 (2004).Google Scholar
4.Killian, C.E., Metzler, R.A., Gong, Y.U., Olson, I.C., Aizenberg, J., Politi, Y., Wilt, F.H., Scholl, A., Young, A., Doran, A., Kunz, M., Tamura, N., Coppersmith, S.N., and Gilbert, P.U.: Mechanism of calcite co-orientation in the sea urchin tooth. J. Am. Chem. Soc. 131, 18404 (2009).Google Scholar
5.Ma, Y., Aichmayer, B., Paris, O., Fratzl, P., Meibom, A., Metzler, R.A., Politi, Y., Addadi, L., Gilbert, P.U., and Weiner, S.: The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl Acad. Sci. USA 106, 6048 (2009).Google Scholar
6.Oaki, Y. and Imai, H.: Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2, 66 (2006).Google Scholar
7.Cai, Y. and Tang, R.: Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 18, 3775 (2008).Google Scholar
8.Amini, S., Masic, A., Bertinetti, L., Teguh, J.S., Herrin, J.S., Zhu, X., Su, H., and Miserez, A.: Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nat. Commun. 5, 3187 (2014).Google Scholar
9.Song, R.Q. and Colfen, H.: Mesocrystals-ordered nanoparticle superstructures. Adv. Mater. 22, 1301 (2010).Google Scholar
10.Hu, J., Shi, Y.N., Sauvage, X., Sha, G., and Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).Google Scholar
11.Zhou, X., Li, X.Y., and Lu, K.: Enhanced thermal stability of nanograined metals below a critical grain size. Science 360, 526 (2018).Google Scholar
12.Colfen, H. and Antonietti, M.: Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576 (2005).Google Scholar
13.Gebauer, D., Volkel, A., and Colfen, H.: Stable prenucleation calcium carbonate clusters. Science 322, 1819 (2008).Google Scholar
14.Pouget, E.M., Bomans, P.H., Goos, J.A., Frederik, P.M., de With, G., and Sommerdijk, N.A.: The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455 (2009).Google Scholar
15.Raiteri, P. and Gale, J.D.: Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623 (2010).Google Scholar
16.Ellies, L.G., Nelson, D.G.A., and Featherstone, J.D.B.: Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials 13, 313 (1992).Google Scholar
17.Yu, T., Liu, Q., Jiang, T., Wang, X., Yang, Y., and Kang, Y.: Channeled β-TCP scaffolds promoted vascularization and bone augmentation in mandible of beagle dogs. Adv. Funct. Mater. 26, 6719 (2016).Google Scholar
18.Dorozhkin, S.V.: Calcium orthophosphates in nature, biology and medicine. Materials 2, 399 (2009).Google Scholar
19.Kivrak, N. and Tas, A.C.: Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 81, 2245 (1998).Google Scholar
20.Gibson, I.R., Rehman, I., Best, S.M., and Bonfield, W.: Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 11, 799 (2000).Google Scholar
21.Vecchio, K.S., Zhang, X., Massie, J.B., Wang, M., and Kim, C.W.: Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 3, 785 (2007).Google Scholar
22.Roy, D.M. and Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247, 220 (1974).Google Scholar
23.Clarke, S.A., Walsh, P., and Maggs, C.A.: Designs from the deep: marine organisms for bone tissue engineering. Biotechnol. Adv. 29, 610 (2011).Google Scholar
24.Zhang, L. and Wang, S.G.: Correlation of materials property and performance with internal structures evolvement revealed by laboratory X-ray tomography. Materials 11, 1795 (2018).10.3390/ma11101795Google Scholar
25.Lemos, A.F., Rocha, J.H.G., and Quaresma, S.S.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc. 26, 3639 (2006).Google Scholar
26.Marchegiani, F., Cibej, E., and Vergni, P.: Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions. J. Cryst. Growth 311, 4219 (2009).Google Scholar
27.Maiti, A., Small, W., Lewicki, J.P., Weisgraber, T.H., Duoss, E.B., Chinn, S.C., Pearson, M.A., Spadaccini, C.M., Maxwell, R.S., and Wilson, T.S.: 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Sci. Rep. 6, 24871 (2016).Google Scholar
28.Tomono, H., Nada, H., Zhu, F., Sakamoto, T., Nishimura, T., and Kato, T.: Effects of magnesium ions and water molecules on the structure of amorphous calcium carbonate: a molecular dynamics study. J. Phys. Chem. B 117, 14849 (2013).Google Scholar
29.Ihli, J., Wong, W.C., Noel, E.H., Kim, Y., Kulak, A.N., Christenson, H.K., Duer, M.J., and Meldrum, F.C.: Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 10, 4169 (2014).Google Scholar
30.Ding, H., Pan, H., Xu, X., and Tang, R.: Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 14, 763 (2014).Google Scholar
31.Sun, W., Jayaraman, S., Chen, W., Persson, K.A., and Ceder, G.: Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl Acad. Sci. USA 112, 3199 (2015).Google Scholar
32.Matsunaga, K.: First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J. Chem. Phys. 128, 245101 (2008).Google Scholar
33.Grigg, A.T., Mee, M., Mallinson, P.M., Fong, S.K., Gan, Z., Dupree, R., and Holland, D.: Cation substitution in beta-tricalcium phosphate investigated using multi-nuclear, solid-state NMR. J. Solid State Chem. 212, 227 (2014).Google Scholar
34.Cui, W., Song, Q., Su, H., Yang, Z., Yang, R., Li, N., and Zhang, X.: The synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals. J. Mater. Sci. Technol. (2019). https://doi.org/10.1016/j.jmst.2019.04.038.Google Scholar
Supplementary material: File

Cui et al. supplementary material

Cui et al. supplementary material
Download Cui et al. supplementary material(File)
File 25.3 MB