Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T10:43:13.976Z Has data issue: false hasContentIssue false

Hydrogel-based microchannels to measure confinement- and stiffness-sensitive Yes-associated-protein activity in epithelial clusters

Published online by Cambridge University Press:  07 September 2017

Samila Nasrollahi
Affiliation:
Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, MO 63130, USA
Amit Pathak*
Affiliation:
Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, MO 63130, USA
*
Address all correspondence to Amit Pathak at pathaka@wustl.edu
Get access

Abstract

Nuclear translocation of Yes-associated-protein (YAP) in single cells serves as a key sensor of matrix stiffness. On two-dimensional (2D) polyacrylamide (PA) hydrogels, we found that nuclear YAP localization in epithelial clusters increases with gel stiffness and reduces with cell density. To measure YAP activity in 3D-like confinement of tunable stiffness, we fabricated PA-based microchannels. Here, narrower channels enhanced nuclear YAP localization even in softer extracellular matrix and denser epithelial clusters, both of which reduced YAP activation in 2D. Thus, the presented hydrogel microchannel-based platform may reveal new mechanosensitive cellular signatures in 3D-like settings, which cannot be captured on standard 2D hydrogels.

Type
Biomaterials for 3D Cell Biology Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pathak, A. and Kumar, S.: Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol.: Quant. Biosci. Nano Macro 3, 267 (2011).Google Scholar
2.Dennis, P.J., Discher, E., and Wang, Y-L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005).Google Scholar
3.Balzer, E.M., Tong, Z., Paul, C.D., Hung, W.C., Stroka, K.M., Boggs, A.E., Martin, S.S., and Konstantopoulos, K.: Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045 (2012).Google Scholar
4.Pathak, A. and Kumar, S.: Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5, 1067 (2013).Google Scholar
5.Pathak, A. and Kumar, S.: Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. U. S. A. 109, 10334 (2012).Google Scholar
6.Peyton, S.R. and Putnam, A.J.: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204, 198 (2005).Google Scholar
7.Rodriguez-Fraticelli, A.E., and Martin-Belmonte, F.: Mechanical control of epithelial lumen formation. Small GTPases 4, 136 (2013).Google Scholar
8.Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., and Ladoux, B.: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. U. S. A. 104, 8281 (2007).Google Scholar
9.Sero, J.E., Sailem, H.Z., Ardy, R.C., Almuttaqi, H., Zhang, T., and Bakal, C.: Cell shape and the microenvironment regulate nuclear translocation of NF-kappaB in breast epithelial and tumor cells. Mol. Syst. Biol. 11, 790 (2015).Google Scholar
10.Hao, J., Zhang, Y., Wang, Y., Ye, R., Qiu, J., Zhao, Z., and Li, J.: Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell. Signal. 26, 186 (2014).Google Scholar
11.Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., and Piccolo, S.: Role of YAP/TAZ in mechanotransduction. Nature 474, 179 (2011).Google Scholar
12.Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y., Thasler, W., Lee, J.T., Avruch, J., and Bardeesy, N.: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425 (2009).Google Scholar
13.Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., Zheng, P., Ye, K., Chinnaiyan, A., Halder, G., Lai, Z.C., and Guan, K.L.: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747 (2007).Google Scholar
14.Moroishi, T., Hansen, C.G., and Guan, K.-L.: The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73 (2015).Google Scholar
15.Zhao, B., Li, L., Lei, Q., and Guan, K.L.: The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862 (2010).Google Scholar
16.Sun, M., Spill, F., and Zaman, M.H.: A Computational Model of YAP/TAZ Mechanosensing. Biophys. J. 110, 2540 (2016).Google Scholar
17.Dupont, S.: Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp. Cell Res. 343, 42 (2016).Google Scholar
18.Fischer, M., Rikeit, P., Knaus, P., and Coirault, C.: YAP-mediated mechanotransduction in skeletal muscle. Front. Physiol. 7, 41 (2016).Google Scholar
19.Low, B.C., Pan, C.Q., Shivashankar, G.V., Bershadsky, A., Sudol, M., and Sheetz, M.: YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588, 2663 (2014).Google Scholar
20.Yang, C., Tibbitt, M.W., Basta, L., and Anseth, K.S.: Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645 (2014).Google Scholar
21.Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., and Sahai, E.: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637 (2013).Google Scholar
22.Liu, F., Lagares, D., Choi, K.M., Stopfer, L., Marinkovic, A., Vrbanac, V., Probst, C.K., Hiemer, S.E., Sisson, T.H., Horowitz, J.C., Rosas, I.O., Fredenburgh, L.E., Feghali-Bostwick, C., Varelas, X., Tager, A.M., and Tschumperlin, D.J.: Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344 (2015).Google Scholar
23.Wada, K., Itoga, K., Okano, T., Yonemura, S., and Sasaki, H.: Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907 (2011).Google Scholar
24.Nasrollahi, S. and Pathak, A.: Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci. Rep. 6, 18831 (2016).Google Scholar
25.Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M.: E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U. S. A. 108, 11930 (2011).Google Scholar
26.Das, A., Fischer, R.S., Pan, D., and Waterman, C.M.: YAP nuclear localization in the absence of cell-cell contact is mediated by a filamentous actin-dependent, Myosin II- and Phospho-YAP-independent pathway during extracellular matrix mechanosensing. J. Biol. Chem. 291, 6096 (2016).Google Scholar
27.Pathak, A.: Scattering of cell clusters in confinement. Biophys. J. 111, 1496 (2016).Google Scholar
28.Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., and Weaver, V.M.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241 (2005).Google Scholar
29.Wei, S.C., Fattet, L., Tsai, J.H., Guo, Y., Pai, V.H., Majeski, H.E., Chen, A.C., Sah, R.L., Taylor, S.S., Engler, A.J., and Yang, J.: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678 (2015).Google Scholar
30.Oka, T., Schmitt, A.P., and Sudol, M.: Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31, 128 (2012).Google Scholar
Supplementary material: PDF

Nasrollahi and Pathak supplementary material

Figure S1

Download Nasrollahi and Pathak supplementary material(PDF)
PDF 501 KB