Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T11:32:52.996Z Has data issue: false hasContentIssue false

A highly efficient and antifouling microfluidic platform for portable hemodialysis devices

Published online by Cambridge University Press:  19 March 2018

Irfani R. Ausri
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Eliana M. Feygin
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Connie Q. Cheng
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Yuxing Wang
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Zhi Yuan (William) Lin
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Xiaowu (Shirley) Tang*
Affiliation:
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
*
Address all correspondence to X. S. Tang at tangxw@uwaterloo.ca
Get access

Abstract

End-stage renal disease (ESRD) is a life-threatening illness that presents significant healthcare challenges. About 90% of ESRD patients receive hemodialysis treatment, but the currently available hemodialysis systems are bulky and prone to complications. We report the design of a microfluidic hemodialysis device composed of two polydimethylsiloxane (PDMS) chambers separated by a cellulose ester (CE) membrane. The polyethylene glycol-passivated PDMS and CE surfaces reduced platelet adhesion by 74% and 86%, respectively. Moreover, the device exhibited a higher urea clearance rate per unit area than a healthy kidney. The reported design sets the foundation for a next-generation biomimetic portable hemodialysis device.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clase, C.: Renal failure (chronic). Clin. Evid. 2011, 126 (2011).Google ScholarPubMed
2.Thomas, R., Kanso, A., and Sedor, J. R.: Chronic kidney disease and its complications. Prim. Care, 35, 329344 (2008) vii. https://doi.org/10.1016/j.pop.2008.01.008.Google Scholar
3.2017 USRDS annual data report: Epidemiology of kidney disease in the United States. (Bethesda, MD, 2017). https://doi.org/10.1053/j.ajkd.2017.01.020.Google Scholar
4.Eames, K.C., Holder, P., and Zambrano, E.: Solving the kidney shortage via the creation of kidney donation co-operatives. J. Health Econ. 54, 9197 (2017). https://doi.org/10.1016/j.jhealeco.2017.04.001.Google Scholar
5.Javed, F., Savkin, A. V., Chan, G. S. H., MacKie, J. D., and Lovell, N. H.: Recent advances in the monitoring and control of haemodynamic variables during haemodialysis: a review. Physiol. Meas. 33, R1R31 (2012). https://doi.org/10.1088/0967-3334/33/1/R1.CrossRefGoogle ScholarPubMed
6.Polaschegg, H.D.: Hemodialysis machine technology: a global overview. Expert. Rev. Med. Devices 7, 793810 (2010). https://doi.org/10.1586/erd.10.54.CrossRefGoogle ScholarPubMed
7.Bernardo, A.A., Marbury, T.C., McFarlane, P.A., Pauly, R.P., Amdahl, M., Demers, J., Hutchcraft, A.M., Leypoldt, J.K., Minkus, M., Muller, M., Stallard, R., and Culleton, B.F.: Clinical safety and performance of VIVIA: a novel home hemodialysis system. NDT 32, 685692 (2017). https://doi.org/10.1093/ndt/gfw044.Google ScholarPubMed
8.Kraemer, M.: Physiological monitoring and control in hemodialysis: State of the art and outlook. Expert Rev. Med. Device 3, 617634 (2006). https://doi.org/10.1586/17434440.3.5.617.CrossRefGoogle ScholarPubMed
9.Wolfe, R.A., Ashby, V.B., Milford, E.L., Ojo, A.O., Ettenger, R.E., Agodoa, L.Y.C., Held, P.J., and Port, F.K.: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 17251730 (1999).CrossRefGoogle ScholarPubMed
10.Kraus, M.A., Kansal, S., Copland, M., Komenda, P., Weinhandl, E.D., Bakris, G.L., Chan, C.T., Fluck, R.J., and Burkart, J.M.: Intensive hemodialysis and potential risks with increasing treatment. Am. J. Kidney Dis. 68, S51S58 (2016). https://doi.org/10.1053/j.ajkd.2016.05.020.CrossRefGoogle ScholarPubMed
11.Tharmaraj, D. and Kerr, P.G.: Haemolysis in haemodialysis. Nephrology 22, 838847 (2017). https://doi.org/10.1111/nep.13119.Google Scholar
12.Sunkara, V. and Cho, Y.K.: Investigation on the mechanism of aminosilane-mediated bonding of thermoplastics and poly(dimethylsiloxane). ACS Appl. Mater. Interfaces 4, 65376544 (2012). https://doi.org/10.1021/am3015923.CrossRefGoogle ScholarPubMed
13.Maji, D., Lahiri, S.K., and Das, S.: Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf. Interface Anal. 44, 6269 (2012). https://doi.org/10.1002/sia.3770.Google Scholar
14.Howarter, J.A. and Youngblood, J.P.: Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22, 1114211147 (2006). https://doi.org/10.1021/la061240g.Google Scholar
15.Hermanson, G. T.: Bioconjugate Techniques (Academic Press, San Diego, California, 1996).Google Scholar
16.Jo, C.H., Roh, Y.H., Kim, J.E., Shin, S., and Yoon, K.S.: Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation. J. Oral Implantol. 39, 525532 (2013). https://doi.org/10.1563/AAID-JOI-D-10-00155.CrossRefGoogle ScholarPubMed
17.Heger, M., Salles, I.I., Van Vuure, W., Deckmyn, H., and Beek, J.F.: Fluorescent labeling of platelets with polyanionic fluorescein derivatives. Anal. Quant. Cytol. Histol. 31, 227232 (2009).Google ScholarPubMed
18.Amin, N.U., Mahmood, R.T., Asad, M.J., Zafar, M., and Raja, A.M.: Evaluating urea and creatinine levels in chronic renal failure pre and post dialysis: a prospective study. J. Cardiovasc. Dis. 2, 23304596 (2014).Google Scholar
19.Foley, R.N., Parfrey, P.S., Harnett, J.D., Kent, G.M., Martin, C.J., Murray, D.C., and Barre, P.E.: Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186192 (1995). https://doi.org/10.1038/ki.1995.22.CrossRefGoogle ScholarPubMed
20.Leverett, L.B., Hellums, J.D., Alfrey, C.P., and Lynch, E.C.: Red blood cell damage by shear stress. Biophys. J. 12, 257273 (1972). https://doi.org/10.1016/S0006-3495(72)86085-5.CrossRefGoogle ScholarPubMed
21.Banerjee, I., Pangule, R.C., and Kane, R.S.: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690718 (2011). https://doi.org/10.1002/adma.201001215.Google Scholar
22.Blaszykowski, C., Sheikh, S., and Thompson, M.: Biocompatibility and antifouling: is there really a link? Trends Biotechnol. 32, 6162 (2014). https://doi.org/10.1016/j.tibtech.2013.11.002.Google Scholar
23.Harder, P., Grunze, M., Dahint, R., Whitesides, G.M., and Laibinis, P.E.: Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426436 (1998). https://doi.org/10.1021/jp972635z.Google Scholar
24.McPherson, R. A., and Pincus, M. R.: Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book, 23rd ed. (Elsevier, St. Louis, Missouri, 2017).Google Scholar
25.Bohle, A., Aeikens, B., Eenboom, A., Fronholt, L., Plate, W.R., Xiao, J.C., Greschniok, a, and Wehrmann, M.: Human glomerular structure under normal conditions and in isolated glomerular disease. Kidney Int. Suppl. 67, S186S188 (1998). https://doi.org/10.1046/j.1523-1755.1998.06742.x.Google Scholar
26.Alayoud, A., Bahadi, A., Aatif, T., Benyahia, M., Montassir, D., Hamzi, A., Zajjari, Y., De. Kabbaj, , Maoujoud, O., Hassani, K., and Oualim, Z.: The Kt/V by ionic dialysance: Interpretation limits. Indian. J. Nephrol. 22, 333 (2012). https://doi.org/10.4103/0971-4065.103906.Google Scholar
27.Eaton, D. C., and Pooler, J. P.: Renal blood flow and glomerular filtration. In Vander's Renal Physiology, 8e (McGraw-Hill Education, New York, NY, 2017).Google Scholar