Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T23:45:53.168Z Has data issue: false hasContentIssue false

Grafting of glycerol methacrylate onto silicone rubber using γ-rays: derivatization to 2-oxoethyl methacrylate and immobilization of lysozyme

Published online by Cambridge University Press:  13 February 2018

G.G. Flores-Rojas*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
F. López-Saucedo
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
M. Quezada-Miriel
Affiliation:
Instituo de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
E. Bucio*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
*
Address all correspondence to G.G. Flores-Rojas and E. Bucio at ggabofo@hotmail.com, ebucio@nucleares.unam.mx
Address all correspondence to G.G. Flores-Rojas and E. Bucio at ggabofo@hotmail.com, ebucio@nucleares.unam.mx
Get access

Abstract

The goal of this work was the modification of silicone rubber (SR) by radiation grafting of glycerol methacrylate (GlyMA) which was limited just on the surface, allowing the control of hydrophilicity and swelling properties. The grafted SRs were activated by derivatization of GlyMA to 2-oxoethyl methacrylate using sodium periodate, enabling the chemical immobilization of lysozyme by covalent bonds. The presence of lysozyme was confirmed by non-specific assay and by the enzymatic activity at 30 °C with Micrococcus lysodeikticus (coccus, Gram-positive). The materials were characterized by Fourier transform infrared spectroscopy-attenuated total reflectance, thermogravimetric analysis, water contact angle, and by mechanical properties as well as scanning electron microscope.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whitford, M.J.: The chemistry of silicone materials for biomedical devices and contact lenses. Biomaterials 5, 298 (1984).CrossRefGoogle ScholarPubMed
2. Formes, A. and Diehl, B.: Investigation of the silicone structure in breast implants using 1H NMR. J. Pharm. Biomed. Anal. 93, 95 (2014).CrossRefGoogle Scholar
3. Saxon, R.R., Barton, R.E., Katon, R.M., Lakin, P.C., Timmermans, H.A., Uchida, B.T., Keller, F.S., and Rösch, J.: Treatment of malignant esophagorespiratory fistulas with silicone-covered metallic Z stents. J. Vasc. Interv. Radiol. 6, 237 (1995).Google Scholar
4. Sidwell, J.: Chapter 6, Global legislation for regenerated cellulose materials in contact with wood In Global legislation for food contact materials, edited by Baughan, J.S. (Elsevier, Shrewsbury, 2015), pp. 141160.Google Scholar
5. O'Toole, G., Kaplan, H.B., and Kolter, R.: Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49 (2000).CrossRefGoogle ScholarPubMed
6. Wang, J., Qin, L., Lin, J., Zhu, J., Zhang, Y., Liu, J., and Van der Bruggen, B.: Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Chem. Eng. J. 323, 56 (2017).CrossRefGoogle Scholar
7. Harding, J.L. and Reynolds, M.M.: Combating medical device fouling. Trends Biotechnol.. 32, 140 (2014).CrossRefGoogle ScholarPubMed
8. Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L., and Costerton, J.W.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967 (2012).CrossRefGoogle ScholarPubMed
9. Mérian, T., and Goddard, J.M.: Advances in nonfouling materials: perspectives for the food industry. J. Agric. Food Chem. 60, 2943 (2012).CrossRefGoogle ScholarPubMed
10. Vazquez-Gonzalez, B., Melendez-Ortiz, H.I., Diaz-Gomez, L., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Silicone rubber modified with methacrylic acid to host antiseptic drugs. Macromol. Mater. Eng. 299, 1240 (2014).Google Scholar
11. Hadjesfandiari, N., Yu, K., Mei, Y., and Kizhakkedathu, J.N.: Polymer brush-based approaches for the development of infection-resistant surfaces. J. Mater. Chem. 2, 4968 (2014).Google Scholar
12. Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., and Rodrigues, R.C.: Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 353, 2885 (2011).CrossRefGoogle Scholar
13. Flores-Rojas, G.G., Pino-Ramos, V.H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C., and Bucio, E.: Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-co-glycidylmethacrylate). Eur. Polym. J. 95, 27 (2017).CrossRefGoogle Scholar
14. Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., and Fernandez-Lafuente, R.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451 (2007).CrossRefGoogle Scholar
15. Feng, W., Brash, J., and Zhu, S.: Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J. Polym. Sci. A Polym. Chem. 42, 2931 (2004).CrossRefGoogle Scholar
16. Abbasi, F., Mirzadeh, H., and Katbab, A-A.: Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int. 50, 1279 (2001).CrossRefGoogle Scholar
17. Flores-Rojas, G.G. and Bucio, E.: Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Radiat. Phys. Chem. 127, 21 (2016).CrossRefGoogle Scholar
18. Valencia-Mora, R.A., Zavala-Lagunes, E., and Bucio, E.: Grafting of thermo-sensitive N-vinylcaprolactam onto silicone rubber through the direct radiation method. Radiat. Phys. Chem. 124, 155 (2016).CrossRefGoogle Scholar
19. Ferraz, C.C., Varca, G.H.C., Ruiz, J.C., Lopes, P.S., Mathor, M.B., Lugão, A.B., and Bucio, E.: Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-coacrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat. Phys. Chem. 97, 298 (2014).CrossRefGoogle Scholar
20. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R.C., and Fernandez-Lafuente, R.: Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583 (2014).CrossRefGoogle Scholar
21. Neves-Petersen, M.T., Snabe, T., Klitgaard, S., Duroux, M., and Petersen, S.B.: Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces. Protein Sci. 15, 343 (2006).CrossRefGoogle ScholarPubMed
22. Chae, H.J., In, M-J., and Kim, E.Y.: Optimization of protease immobilization by covalent binding using glutaraldehyde. Appl. Biochem. Biotechnol. 73, 195 (1998).Google Scholar
23. Flores-Rojas, G.G., López-Saucedo, F., Bucio, E., and Isoshima, T.: Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting. MRS Commun. 7, 904 (2017).CrossRefGoogle Scholar
24. Guadarrama-Zempoalteca, Y., Díaz-Gómez, L., Meléndez-Ortiz, H.I., Concheiro, A., Alvarez-Lorenzo, C., and Bucio, E.: Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiat. Phys. Chem. 126, 1 (2016).CrossRefGoogle Scholar
25. Masoom, M. and Townshend, A.: Simultaneous determination of sucrose and glucose in mixtures by flow injection analysis with immobilized enzymes. Anal. Chim. Acta 171, 185 (1985).CrossRefGoogle Scholar
26. Sheldon, R.A.: Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289 (2007).CrossRefGoogle Scholar
Supplementary material: File

Flores-Rojas et al. supplementary material

Flores-Rojas et al. supplementary material 1

Download Flores-Rojas et al. supplementary material(File)
File 1.2 MB