Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:26:45.676Z Has data issue: false hasContentIssue false

General method to synthesize ultrasmall metal oxide nanoparticle suspensions for hole contact layers in organic photovoltaic devices

Published online by Cambridge University Press:  03 March 2015

Yun-Ju Lee*
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080
Jian Wang
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080
Julia W. P. Hsu
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080
Diego Barrera
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080; Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, 66600 Apodaca, Nuevo León, México
*
Address all correspondence to Yun-Ju Lee atyjalee@utdallas.edu
Get access

Abstract

Solution-processed hole contact layers (HCLs) of metal oxide nanoparticle (NP) films improve performance of organic photovoltaics (OPVs), but have thus far required harsh post-deposition thermal or plasma treatments. Here, we describe a general method to synthesize suspensions of ultrasmall (1–2 nm) MoO3, WO3, NiOx, and CoOx NPs in n-butanol. Spin-coated metal oxide NP films with no post-deposition treatment exhibit high work function and ionization energy consistent with the oxidation states of the metal cations. Metal oxide NP HCLs demonstrate performance matching those of reference conventional and inverted OPVs containing PEDOT:PSS and evaporated MoO3.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Greiner, M.T. and Lu, Z.-H.: Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013).Google Scholar
2.Li, N., Baran, D., Forberich, K., Machui, F., Ameri, T., Turbiez, M., Carrasco-Orozco, M., Drees, M., Facchetti, A., Krebs, F.C., and Brabec, C.J.: Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy Environ. Sci. 6, 3407 (2013).Google Scholar
3.Søndergaard, R.R., Hösel, M., and Krebs, F.C.: Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci. B, Polym. Phys. 51, 16 (2013).Google Scholar
4.Steim, R., Kogler, F.R., and Brabec, C.J.: Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010).CrossRefGoogle Scholar
5.Yip, H.-L. and Jen, A.K.Y.: Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994 (2012).CrossRefGoogle Scholar
6.Zilberberg, K., Meyer, J., and Riedl, T.: Solution processed metal-oxides for organic electronic devices. J. Mater. Chem. C 1, 4796 (2013).CrossRefGoogle Scholar
7.Steirer, K.X., Ndione, P.F., Widjonarko, N.E., Lloyd, M.T., Meyer, J., Ratcliff, E.L., Kahn, A., Armstrong, N.R., Curtis, C.J., Ginley, D.S., Berry, J.J., and Olson, D.C.: Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers. Adv. Energy Mater. 1, 813 (2011).Google Scholar
8.Liu, F., Shao, S., Guo, X., Zhao, Y., and Xie, Z.: Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer. Sol. Energy Mater. Sol. Cells 94, 842 (2010).Google Scholar
9.Chen, C.-P., Chen, Y.-D., and Chuang, S.-C.: High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer. Adv. Mater. 23, 3859 (2011).Google Scholar
10.Zilberberg, K., Gharbi, H., Behrendt, A., Trost, S., and Riedl, T.: Low-temperature, solution-processed MoOx for efficient and stable organic solar cells. ACS Appl. Mater. Interfaces 4, 1164 (2012).Google Scholar
11.Xie, F., Choy, W.C.H., Wang, C., Li, X., Zhang, S., and Hou, J.: Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics. Adv. Mater. 25, 2051 (2013).Google Scholar
12.Zilberberg, K., Trost, S., Schmidt, H., and Riedl, T.: Solution processed vanadium pentoxide as charge extraction layer for organic solar cells. Adv. Energy Mater. 1, 377 (2011).CrossRefGoogle Scholar
13.Steirer, K.X., Chesin, J.P., Widjonarko, N.E., Berry, J.J., Miedaner, A., Ginley, D.S., and Olson, D.C.: Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Org. Electron. 11, 1414 (2010).Google Scholar
14.Girotto, C., Voroshazi, E., Cheyns, D., Heremans, P., and Rand, B.P.: Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 3, 3244 (2011).Google Scholar
15.Stubhan, T., Ameri, T., Salinas, M., Krantz, J., Machui, F., Halik, M., and Brabec, C.J.: High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension. Appl. Phys. Lett. 98, 253308 (2011).CrossRefGoogle Scholar
16.Stubhan, T., Li, N., Luechinger, N.A., Halim, S.C., Matt, G.J., and Brabec, C.J.: High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer. Adv. Energy Mater. 2, 1433 (2012).Google Scholar
17.Yang, T., Wang, M., Cao, Y., Huang, F., Huang, L., Peng, J., Gong, X., Cheng, S.Z.D., and Cao, Y.: Polymer solar cells with a low-temperature-annealed sol–gel-derived MoOx film as a hole extraction layer. Adv. Energy Mater. 2, 523 (2012).Google Scholar
18.Zilberberg, K., Trost, S., Meyer, J., Kahn, A., Behrendt, A., Lützenkirchen-Hecht, D., Frahm, R., and Riedl, T.: Inverted organic solar cells with sol–gel processed high work-function vanadium oxide hole-extraction layers. Adv. Funct. Mater. 21, 4776 (2011).Google Scholar
19.Lee, Y.-J., Yi, J., Gao, G.F., Koerner, H., Park, K., Wang, J., Luo, K., Vaia, R.A., and Hsu, J.W.P.: Low-temperature solution-processed molybdenum oxide nanoparticle hole transport layers for organic photovoltaic devices. Adv. Energy Mater. 2, 1193 (2012).Google Scholar
20.Huang, J.-H., Huang, T.-Y., Wei, H.-Y., Ho, K.-C., and Chu, C.-W.: Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells. RSC Adv. 2, 7487 (2012).CrossRefGoogle Scholar
21.Redel, E., Huai, C., Dag, Ö., Petrov, S., O'Brien, P.G., Helander, M.G., Mlynarski, J., and Ozin, G.A.: From bare metal powders to colloidally stable TCO dispersions and transparent nanoporous conducting metal oxide thin films. Small 8, 3806 (2012).CrossRefGoogle ScholarPubMed
22.Meyer, J., Khalandovsky, R., Goerrn, P., and Kahn, A.: MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23, 70 (2011).CrossRefGoogle ScholarPubMed
23.Greiner, M.T., Chai, L., Helander, M.G., Tang, W.-M., and Lu, Z.-H.: Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 22, 4557 (2012).Google Scholar
24.Meyer, J., Shu, A., Kroeger, M., and Kahn, A.: Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces. Appl. Phys. Lett. 96, 133308 (2010).Google Scholar
25.Ratcliff, E.L., Meyer, J., Steirer, K.X., Armstrong, N.R., Olson, D., and Kahn, A.: Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency. Org. Electron. 13, 744 (2012).Google Scholar
26.Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W., Gerson, A.R., and Smart, R.S.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011).Google Scholar
27.Ratcliff, E.L., Meyer, J., Steirer, K.X., Garcia, A., Berry, J.J., Ginley, D.S., Olson, D.C., Kahn, A., and Armstrong, N.R.: Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 23, 4988 (2011).Google Scholar
28.Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C., and Dyakonov, V.: S-shaped current-voltage characteristics of organic solar devices. Phys. Rev. B 82, 115306 (2010).CrossRefGoogle Scholar
29.Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297 (2009).Google Scholar
30.Gao, W., Dickinson, L., Grozinger, C., Morin, F.G., and Reven, L.: Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12, 6429 (1996).CrossRefGoogle Scholar
Supplementary material: File

Lee supplementary material S1

Lee supplementary material S1

Download Lee supplementary material S1(File)
File 493.1 KB