Published online by Cambridge University Press: 03 March 2015
Solution-processed hole contact layers (HCLs) of metal oxide nanoparticle (NP) films improve performance of organic photovoltaics (OPVs), but have thus far required harsh post-deposition thermal or plasma treatments. Here, we describe a general method to synthesize suspensions of ultrasmall (1–2 nm) MoO3, WO3, NiOx, and CoOx NPs in n-butanol. Spin-coated metal oxide NP films with no post-deposition treatment exhibit high work function and ionization energy consistent with the oxidation states of the metal cations. Metal oxide NP HCLs demonstrate performance matching those of reference conventional and inverted OPVs containing PEDOT:PSS and evaporated MoO3.