Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T16:51:14.530Z Has data issue: false hasContentIssue false

Functional semiconductors targeting copolymer architectures and hybrid nanostructures

Published online by Cambridge University Press:  26 June 2015

Joannis K. Kallitsis*
Affiliation:
Department of Chemistry, University of Patras, Rio-Patras, Greece Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH-ICE-HT), Patras, Greece
Charalampos Anastasopoulos
Affiliation:
Department of Chemistry, University of Patras, Rio-Patras, Greece
Aikaterini K. Andreopoulou
Affiliation:
Department of Chemistry, University of Patras, Rio-Patras, Greece Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH-ICE-HT), Patras, Greece
*
Address all correspondence to Joannis K. Kallitsis atj.kallitsis@upatras.gr
Get access

Abstract

The introduction of functional units onto semiconducting polymers either as side chains or at the α- and ω-ends of polymeric chains is the method of choice in order to impose additional functions to the final semiconducting materials when aiming specific applications. Moreover, the functionalization approach provides a route to further complex macromolecular architectures as well as the generation of hybrid materials through the covalent attachment of the semiconductor to carbon nanostructures or to inorganic nanoparticles. Via this prospective an outline over functionalized and hybrid semiconducting polymers is provided along with possible paths of future research toward functional and hybrid semiconductors.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem., Int. Ed. 40, 25912611 (2001).3.0.CO;2-0>CrossRefGoogle ScholarPubMed
2.Carle, J.E., Helgesen, M., Madsen, M.V., Bundgaard, E., and Krebs, F.C.: Upscaling from single cells to modules–fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J. Mater. Chem. C 2, 12901297 (2014).CrossRefGoogle Scholar
3.He, Z., Zhong, C., Su, S., Xu, M., Wu, H., and Cao, Y.: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591595 (2012).Google Scholar
4.Boudreault, P.-L.T., Najari, A., and Leclerc, M.: Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23, 456469 (2011).CrossRefGoogle Scholar
5.Hong, S.Y., Kertesz, M., Lee, Y.S., and Kim, O.K.: Geometrical and electronic structures of a benzimidazobenzophenanthroline-type ladder polymer (BBL). Macromolecules 25, 54245429 (1992).CrossRefGoogle Scholar
6.Babel, A. and Jenekhe, S.A.: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 1365613657 (2003).Google Scholar
7.Alam, M.M. and Jenekhe, S.A.: Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem. Mater. 16, 46474656 (2004).CrossRefGoogle Scholar
8.Jeffries-EL, M. and McCullough, R.D.: ‘Regioregular Polythiophenes’, Chapter 9 in Skotheim, T.A. and Reynolds, J. (eds), Handbook of Conducting Polymers, 3rd ed. (CRC Press, LLC, Boca Raton, FL, 2007), pp. 149.Google Scholar
9.Perepichka, I.F. and Perepichka, D.F. (eds): Handbook of Thiophene Based Materials: Applications in Organic Electronics and Photonics, Volume One: Synthesis and Theory (John Wiley & Sons, Chichester, 2009).CrossRefGoogle Scholar
10.McCullough, R.D.: The chemistry of conducting polythiophenes. Adv. Mater. 10, 93116 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
11.Loewe, R.S., Ewbank, P.C., Liu, J., Zhai, L., and McCullough, R.D.: Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the grim method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 43244333 (2001).CrossRefGoogle Scholar
12.Miyakoshi, R., Yokoyama, A., and Yokozawa, T.: Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 127, 1754217547 (2005).CrossRefGoogle ScholarPubMed
13.Beryozkina, T., Senkovskyy, V., Kaul, E., and Kiriy, A.: Kumada catalyst-transfer polycondensation of thiophene-based oligomers: robustness of a chain-growth mechanism. Macromolecules 41, 78177823 (2008).CrossRefGoogle Scholar
14.Senkovskyy, V., Sommer, M., Tkachov, R., Komber, H., Huck, W.T.S., and Kiriy, A.: Convenient route to initiate kumada catalyst-transfer polycondensation using Ni(dppe)Cl2 or Ni(dppp)Cl2 and sterically hindered grignard compounds. Macromolecules 43, 1015710161 (2010).CrossRefGoogle Scholar
15.Kiriy, A., Senkovskyy, V., and Sommer, M.: Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol. Rapid Commun. 32, 15031517 (2011).CrossRefGoogle ScholarPubMed
16.Liu, J.S. and McCullough, R.D.: End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules 35, 98829889 (2002).Google Scholar
17.Li, Y., Vamvounis, G., Yu, J., and Holdcroft, S.: A novel and versatile methodology for functionalization of conjugated polymers. Transformation of poly(3-bromo-4-hexylthiophene) via palladium-catalyzed coupling chemistry. Macromolecules 34, 31303132 (2001).CrossRefGoogle Scholar
18.Stefan, M.C., Bhatt, M.P., Sista, P., and Magurudeniya, H.D.: Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 3, 16931701 (2012).CrossRefGoogle Scholar
19.Economopoulos, S.P., Chochos, C.L., Gregoriou, V.G., Kallitsis, J.K., Barrau, S., and Hadziioannou, G.: Novel brush-type copolymers bearing thiophene backbone and side chain quinoline blocks. Synthesis and their use as a compatibilizer in thiophene–quinoline polymer blends. Macromolecules 40, 921927 (2007).Google Scholar
20.Gholamkhass, B. and Holdcroft, S.: Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 22, 53715376 (2010).Google Scholar
21.Goubard, F. and Wantz, G.: Ternary blends for polymer bulk heterojunction solar cells. Polym. Int. 63, 13621367 (2014).CrossRefGoogle Scholar
22.Dang, M.T., Hirsch, L., Wantz, G., and Wuest, J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the Benchmark poly(3-hexylthiophene):[6,6]-Phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 37343765 (2013).CrossRefGoogle Scholar
23.Yuan, K., Chen, L., and Chen, Y.: Nanostructuring compatibilizers of block copolymers for organic photovoltaics. Polym. Int. 63, 593606 (2014).CrossRefGoogle Scholar
24.Topham, P.D., Parnell, A.J., and Hiorns, R.C.: Block copolymer strategies for solar cell technology. J. Polym. Sci. B: Polym. Phys. 49, 11311156 (2011).CrossRefGoogle Scholar
25.Wantz, G., Derue, L., Dautel, O., Rivaton, A., Hudhomme, P., and Dagron-Lartigau, C.: Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polym. Int. 63, 13461361 (2014).CrossRefGoogle Scholar
26.Kim, B.J., Miyamoto, Y., Ma, B., and Frechet, J.M.J.: Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 22732281 (2009).Google Scholar
27.Kim, H.J., Han, A-R., Cho, C.-H., Kang, H., Cho, H.-H., Lee, M.Y., Fréchet, J.M.J., Oh, J.H., and Kim, B.J.: Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers. Chem. Mater. 24, 215221 (2012).Google Scholar
28.Khiev, S., Derue, L., Ayenew, G., Medlej, H., Brown, R., Rubatat, L., Hiorns, R.C., Wantz, G., and , C.Dagron-Lartigau: enhanced thermal stability of organic solar cells by using photolinkable end-capped polythiophenes. Polym. Chem. 4, 41454150 (2013).CrossRefGoogle Scholar
29.Jeffries-El, M., Sauve, G., and McCullough, R.D.: Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 38, 1034610352 (2005).CrossRefGoogle Scholar
30.Yassara, A., Miozzoa, L., Girondaa, R., and Horowitz, G.: Rod–coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 38, 791844 (2013).Google Scholar
31.Urien, M., Erothu, H., Cloutet, E., Hiorns, R.C., Vignau, L., and Cramail, H.: Poly(3-hexylthiophene) based block copolymers prepared by “click” chemistry. Macromolecules 41, 70337040 (2008).Google Scholar
32.Tao, Y., McCulloch, B., Kim, S., and Segalman, R.A.: The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells. Soft Matter 5, 42194230 (2009).CrossRefGoogle Scholar
33.Craley, C.R., Zhang, R., Kowalewski, T., McCullough, R.D., and Stefan, M.C.: Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer. Macromol. Rapid Commun. 30, 1116 (2009).CrossRefGoogle Scholar
34.Mougnier, S.-J., Brochon, C., Cloutet, E., Fleury, G., Cramail, H., and Hadziioannou, G.: Design of well-defi ned monofunctionalized poly(3-hexylthiophene)s: toward the synthesis of semiconducting graft copolymers. Macromol. Rapid Commun. 33, 703709 (2012).CrossRefGoogle Scholar
35.Li, Z., Ono, R.J., Wu, Z.-Q., and Bielawski, C.W.: Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid). Chem. Commun. 47, 197199 (2011).CrossRefGoogle ScholarPubMed
36.Erothu, H., Kolomanska, J., Johnston, P., Schumann, S., Deribew, D., Toolan, D.T.W., Gregori, A., Dagron-Lartigau, C., Portale, G., Bras, W., Arnold, T., Distler, A., Hiorns, R.C., Mokarian-Tabari, P., Collins, T.W., Howse, J.R., and Topham, P.D.: Synthesis, thermal processing, and thin film morphology of poly(3-hexylthiophene)–poly(styrenesulfonate) block copolymers. Macromolecules 48, 21072117 (2015).CrossRefGoogle Scholar
37.Lohwasser, R.H. and Thelakkat, M.: Synthesis of amphiphilic rod–coil P3HT-b-P4VP carrying a long conjugated block using NMRP and click chemistry. Macromolecules 45, 30703077 (2012).CrossRefGoogle Scholar
38.Erothu, H., Sohdi, A.A., Kumar, A.C., Sutherland, A.J., Dagron-Lartigau, C., Allal, A., Hiorns, R.C., and Topham, P.D.: Facile synthesis of poly(3-hexylthiophene)-blockpoly(ethylene oxide) copolymers via Steglich esterification. Polym. Chem. 4, 36523655 (2013).CrossRefGoogle Scholar
39.Jeffries-El, M., Sauvé, G., and McCullough, R.D.: In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the grignard metathesis polymerization method. Adv. Mater. 16, 10171019 (2004).Google Scholar
40.Kakogianni, S., Kourkouli, S.N., Andreopoulou, A.K., and Kallitsis, J.K.: A versatile approach for creating hybrid semiconducting polymer–fullerene architectures for organic electronics. J. Mater. Chem. A 2, 81108117 (2014).CrossRefGoogle Scholar
41.Chen, J. and Cao, Y.: Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42, 17091718 (2009).Google Scholar
42.Cheng, Y.J., Yang, S.H., and Hsu, C.S.: Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 58685923 (2009).CrossRefGoogle ScholarPubMed
43.Yoon, M.-H., Kim, C., Facchetti, A., and Marks, T.J.: Gate dielectric chemical structure–organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 128, 1285112869 (2006).CrossRefGoogle ScholarPubMed
44.Crouch, D.J., Skabara, P.J., Lohr, J.E., McDouall, J.J.W., Heeney, M., McCulloch, I., Sparrowe, D., Shkunov, M., Coles, S.J., Horton, P.N., and Hursthouse, M.B.: Thiophene and selenophene copolymers incorporating fluorinated phenylene units in the main chain: synthesis, characterization, and application in organic field-effect transistors. Chem. Mater. 17, 65676578 (2005).CrossRefGoogle Scholar
45.Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., and Yu, L.: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135E138 (2010).CrossRefGoogle ScholarPubMed
46.Sonar, P., Chang, J., Shi, Z., Wu, J., and Li, J.: Thiophene–tetrafluorophenyl–thiophene: a promising building block for ambipolar organic field effect transistors. J. Mater. Chem. C 3, 20802085 (2015).CrossRefGoogle Scholar
47.Lobez, J.M., Andrew, T.L., Buloviand, V., and Swager, T.M.: Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. ACS Nano 6, 30443056 (2012).Google Scholar
48.Giannopoulos, P., Nikolakopoulou, A., Andreopoulou, A.K., Sygellou, L., Kallitsis, J.K., and Lianos, P.: An alternative methodology for anchoring organic sensitizers onto TiO2 semiconductors for photoelectrochemical applications. J. Mater. Chem. A 2, 2074820759 (2014).Google Scholar
49.Giannopoulos, P., Anastasopoulos, C., Andreopoulou, A.K., and Kallitsis, J.K.: Low-band gap electron-donor oligomeric sensitizers directly connected onto TiO2 nanoparticles for dye sensitized solar cells applications. J. Surf. Interface Mater. 2, 274279 (2014).Google Scholar
50.Liu, J., Tanaka, T., Sivula, K., Alivisatos, A.P., and Frechet, J.M.J.: Employing end-functional polythiophene to control the morphology of nanocrystal–polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 65506551 (2004).CrossRefGoogle ScholarPubMed
51.Rath, T. and Trimme, G.: In situ syntheses of semiconducting nanoparticles in conjugated polymer matrices and their application in photovoltaics. Hybrid Mater. 1, 1536 (2013).Google Scholar
52.Freitas, J.N., Gonçalves, A.S., and Nogueiras, A.F.: A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6, 63716397 (2014).CrossRefGoogle ScholarPubMed
53.Guo, Z.-S., Zhao, L., Pei, J., Zhou, Z.-L., Gibson, G., Brug, J., Lam, S., and Mao, S.S.: CdSe/ZnS nanoparticle composites with amine-functionalized polyfluorene derivatives for polymeric light-emitting diodes: synthesis, photophysical properties, and the electroluminescent performance. Macromolecules 43, 18601866 (2010).Google Scholar
54.Skaff, H., Sill, K., and Emrick, T.: Quantum dots tailored with poly(para-phenylene vinylene). J. Am. Chem. Soc. 126, 1132211325 (2004).Google Scholar
55.de Roo, T., Haase, J., Keller, J., Hinz, C., Schmid, M., Seletskiy, D.V., Cölfen, H., Leitenstorfer, A., and Mecking, S.: A direct approach to organic/inorganic semiconductor hybrid particles via functionalized polyfluorene ligands. Adv. Funct. Mater. 24, 27142719 (2014).Google Scholar
56.Monnaie, F., Brullot, W., Verbiest, T., De Winter, J., Gerbaux, P., Smeets, A., and Koeckelberghs, G.: Synthesis of end-group functionalized P3HT: general protocol for P3HT/nanoparticle hybrids. Macromolecules 46, 85008508 (2013).Google Scholar
57.Bousqueta, A., Awada, H., Hiorns, R.C., Dagron-Lartigau, C., and Billona, L.: Conjugated-polymer grafting on inorganic and organicsubstrates: a new trend in organic electronic materials. Prog. Polym. Sci. 39, 18471877 (2014).CrossRefGoogle Scholar
58.Martinez, L., Higuchi, S., MacLachlan, A.J., Stavrinadis, A., Miller, N.C., Diedenhofen, S.L., Bernechea, M., Sweetnam, S., Nelson, J., Haque, S.A., Tajimaef, K., and Konstantatos, G.: Improved electronic coupling in hybrid organic–inorganic nanocomposites employing thiol-functionalized P3HT and bismuth sulfide nanocrystals. Nanoscale 6, 1001810026 (2014).Google Scholar
59.Lindner, S.M. and Thelakkat, M.: Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers. Macromolecules 37, 88328835 (2004).CrossRefGoogle Scholar
60.Lindner, S.M., Huttner, S., Chiche, A., Thelakkat, M., and Krausch, G.: Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angew. Chem., Int. Ed. 45, 33643368 (2006).Google Scholar
61.Sommer, M., Lindner, S.M., and Thelakkat, M.: Microphase-separated donor–acceptor diblock copolymers: influence of homo energy levels and morphology on polymer solar cells. Adv. Funct. Mater. 17, 14931500 (2007).Google Scholar
62.Sommer, M., Lang, A.S., and Thelakkat, M.: Crystalline–crystalline donor–acceptor block copolymers. Angew. Chem., Int. Ed. 47, 79017904 (2008).CrossRefGoogle ScholarPubMed
63.Zhang, Q.L., Cirpan, A., Russell, T.P., and Emrick, T.: Donor–acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 42, 10791082 (2009).CrossRefGoogle Scholar
64.Rajaram, S., Armstrong, P.B., Kim, B.J., and Frechet, J.M.J.: Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene):perylene diimide solar cells. Chem. Mater. 21, 17751777 (2009).CrossRefGoogle Scholar
65.Mansky, P., Liu, Y., Huang, E., Russell, T.P., and Hawker, C.: Controlling polymer-surface interactions with random copolymer brushes. Science 275, 14581460 (1997).CrossRefGoogle Scholar
66.Zhao, B. and Brittain, W.: Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677710 (2000).Google Scholar
67.Campidelli, S., Sooambar, C., Diz, E.L., Ehli, C., Guldi, D.M., and Prato, M.: Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128, 1254412552 (2006).CrossRefGoogle ScholarPubMed
68.Cioffi, C., Campidelli, S., Sooambar, C., Marcaccio, M., Marcolongo, G., Meneghetti, M., Paolucci, D., Paolucci, F., Ehli, C., Rahman, G.M.A., Sgobba, V., Guldi, D.M., and Prato, M.: Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 39383945 (2007).Google Scholar
69.Karousis, N., Tagmatarchis, N., and Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 53665397 (2010).Google Scholar
70.Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 11051136 (2006).Google Scholar
71.Stefopoulos, A.A., Chochos, C.L., Prato, M., Pistolis, G., Papagelis, K., Petraki, F., Kennou, S., and Kallitsis, J.K.: Novel hybrid materials consisting of regioregular poly(3-octylthiophene)s covalently attached to single-wall carbon nanotubes. Chem. Eur. J. 14, 87158724 (2008).Google Scholar
72.Chochos, C.L., Stefopoulos, A.A., Campidelli, S., Prato, M., Gregoriou, V.G., and Kallitsis, J.K.: Immobilization of oligoquinoline chains on single-wall carbon nanotubes and their optical behavior. Macromolecules 41, 18251830 (2008).CrossRefGoogle Scholar
73.Stefopoulos, A.A., Kourkouli, S.N., Economopoulos, S., Ravani, F., Andreopoulou, A., Papagelis, K., Siokou, A., and Kallitsis, J.K.: Polymer and hybrid electron accepting materials based on a semiconducting perfluorophenylquinoline. Macromolecules 43, 48274828 (2010).Google Scholar
74.Kourkouli, S.N., Siokou, A., Stefopoulos, A.A., Ravani, F., Plocke, T., Müller, M., Maultzsch, J., Thomsen, C., Papagelis, K., and Kallitsis, J.K.: Electronic properties of semiconducting polymer-functionalized single wall carbon nanotubes. Macromolecules 46, 25902598 (2013).Google Scholar
75.de Boer, B., Stalmach, U., van Hutten, P.F., Melzer, C., Krasnikov, V.V., and Hadziioannou, G.: Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 42, 90979109 (2001).CrossRefGoogle Scholar
76.van der Veen, M.H., de Boer, B., Stalmach, U., van de Wetering, K.I., and Hadziioannou, G.: Donor–acceptor diblock copolymers based on PPV and C60: synthesis, thermal properties, and morphology. Macromolecules 37, 36733684 (2004).CrossRefGoogle Scholar
77.Barrau, S., Heiser, T., Richard, F., Brochon, C., Ngov, C., van de Wetering, K., Hadziioannou, G., Anokhin, D.V., and Ivanov, D.: A. Self-assembling of novel fullerene-grafted donor–acceptor rod–coil block copolymers. Macromolecules 41, 27012710 (2008).Google Scholar
78.Sivula, K., Ball, Z.T., Watanabe, N., and Frechet, J.M.J.: Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv. Mater. 18, 206210 (2006).Google Scholar
79.Richard, F., Brochon, C., Leclerc, N., Eckhardt, D., Heiser, T., and Hadziioannou, G.: Design of a linear poly(3-hexylthiophene)/fullerene-based donor–acceptor rod–coil block copolymer. Macromol. Rapid. Commun. 29, 885891 (2008).Google Scholar
80.Li, M., Xu, P., Yang, J., and Yang, S.: Donor-π-acceptor double-cable polythiophenes bearing fullerene pendant with tunable donor/acceptor ratio: a facile postpolymerization. J. Mater. Chem. 20, 39533960 (2010).Google Scholar
81.Dante, M., Yang, C., Walker, B., Wudl, F., and Nguyen, T.-Q.: Self-assembly and charge-transport properties of a polythiophene–fullerene triblock copolymer. Adv. Mater. 22, 18351839 (2010).Google Scholar
82.Hiorns, R.C., Iratçabal, P., Bégué, D., Khoukh, A., De Bettignies, R., Leroy, J., Firon, M., Sentein, C., Martinez, H., Preud'homme, H., and Dagron-Lartigau, C.: Alternatively linking fullerene and conjugated polymers. J. Polym. Sci. A: Polym. Chem. 47, 23042317 (2009).CrossRefGoogle Scholar
83.Lee, J.U., Jung, J.W., Emrick, T., Russell, T.P., and Jo, W.H.: Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J. Mater. Chem. 20, 32873294 (2010).Google Scholar
84.Gholamkhass, B., Peckham, T.J., and Holdcroft, S.: Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation vs. self-organization. Polym. Chem. 1, 708719 (2010).CrossRefGoogle Scholar
85.Lee, J.U., Cirpan, A., Emrick, T., Russell, T.P., and Jo, W.H.: Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. J. Mater. Chem. 19, 14831489 (2009).CrossRefGoogle Scholar
86.Yang, C., Lee, J.K., Heeger, A.J., and Wudl, F.: Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 19, 54165423 (2009).CrossRefGoogle Scholar
87.Bicciocchi, E., Chen, M., Rizzardo, E., and Ghiggino, K.P.: Synthesis of a rod–coil block copolymer incorporating PCBM. Polym. Chem. 4, 5356 (2013).Google Scholar
88.Chen, M., Li, M., Wang, H., Qu, S., Zhao, X., Xie, L., and Yang, S.: Side-chain substitution of poly(3-hexylthiophene) (P3HT) by PCBM via postpolymerization: an intramolecular hybrid of donor and acceptor. Polym. Chem. 4, 550557 (2013).Google Scholar
89.Sary, N., Richard, F., Brochon, C., Leclerc, N., Lévêque, P., Audinot, J.-N., Berson, S., Heiser, T., Hadziioannou, G., and Mezzenga, R.: A new supramolecular route for using rod–coil block copolymers in photovoltaic applications. Adv. Mater. 22, 763768 (2010).Google Scholar
90.Renaud, C., Mougnier, S.-J., Pavlopoulou, E., Brochon, C., Fleury, G., Deribew, D., Portale, G., Cloutet, E., Chambon, S., Vignau, L., and Hadziioannou, G.: Block copolymer as a nanostructuring agent for high efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24, 21962201 (2012).Google Scholar
91.Laiho, A., Ras, R.H.A., Valkama, S., Ruokolainen, J., Österbacka, R., and Ikkala, O.: Control of self-assembly by charge-transfer complexation between c60 fullerene and electron donating units of block copolymers. Macromolecules 39, 76487653 (2006).Google Scholar
92.Wang, M., Heeger, A.J., and Wudl, F.: Self-assembly of a fullerene poly(3-hexylthiophene) dyad. Small 7, 298301 (2011).CrossRefGoogle ScholarPubMed
93.Kamkar, D.A., Wang, M., Wudl, F., and Thuc-Quyen, N.: Single nanowire OPV properties of a fullerene-capped P3HT dyad investigated using conductive and photoconductive AFM. ACS Nano 6, 11491157 (2012).Google Scholar
94.Wang, M. and Wudl, F.: Top-down meets bottom-up: organized donor–acceptor heterojunctions for organic solar cells. J. Mater. Chem. 22, 2429724314 (2012).Google Scholar
95.Yan, M., Cai, S.X., and Keana, J.F.W.: Photochemical and thermal reactions of C60 with N-succinimidyl 4-azido-2,3,5,6-tetrafluorobenzoate: a new method for functionalization of C60. J. Org. Chem. 59, 59515954 (1994).Google Scholar
96.Cases, M., Duran, M., Mestres, J., Martín, N., and Solà, M.: Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent N2 extrusion to form monoimino-[60]fullerenes. J. Org. Chem. 66, 433442 (2001).Google Scholar
97.Pastine, S.J., Okawa, D., Kessler, B., Rolandi, M., Llorente, M., Zettl, A., and Fréchet, J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 42384239 (2008).Google Scholar
98.Suggs, K., Reuven, D., and Wang, X.-Q.: Electronic properties of cycloaddition-functionalized graphene. J. Phys. Chem. C 115, 33133317 (2011).Google Scholar
99.Liu, L.-H. and Yan, M.: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 14341443 (2010).Google Scholar
100.Yameen, B., Puerckhauer, T., Ludwig, J., Ahmed, I., Altintas, O., Fruk, L., Colsmann, A., and Barner-Kowollik, C.: π-conjugated polymer–fullerene covalent hybrids via ambient conditions diels–alder ligation. Small 10, 30913098 (2014).Google Scholar
101.Hiorns, R.C., Cloutet, E., Ibarboure, E., Khoukh, A., Bejbouji, H., Vignau, L., and Cramail, H.: Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 43, 60336044 (2010).Google Scholar
102.Perrin, L., Legros, M., and Mercier, R.: Design of a series of polythiophenes containing C60 groups: synthesis and optical and electrochemical properties. Macromolecules 48, 323336 (2015).Google Scholar