Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T14:31:25.956Z Has data issue: false hasContentIssue false

Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release

Published online by Cambridge University Press:  24 October 2017

Narsimha Mamidi*
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México
Héctor Manuel Leija Gutiérrez
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México
Javier Villela-Castrejón
Affiliation:
Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, N.L., C.P. 64849, México
Lucas Isenhart
Affiliation:
Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
Enrique V. Barrera
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA
Alex Elías-Zúñiga
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México
*
Address all correspondence to Narsimha Mamidi at narsimhachem06@gmail.com
Get access

Abstract

Gelatin/poly(epichlorohydrin-co-ethylene oxide) [GL : PECO] composites are synthesized in a one-step process by the incorporation of elastic PECO and diclofenac. [GL : PECO] fibers are prepared by Forcespinning®. GL : PECO fibers are capable of diclofenac, by conjugation via a labile amide linkage. Fourier transform infrared spectroscopy (FTIR) results confirmed the chemical reactions and hydrogen bonds between gelatin, PECO, and diclofenac. Diclofenac drug release from GL : PECO fibers are measured for 15 days and prolonged drug release is observed. The cell viability is studied with NIH/3T3 and excellent results are observed. The sustained drug release and cytotoxicity results reveal that GL : PECO fibers could be promising substitutes for skin tissue engineering, wound healing, and drug delivery.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, S.W., Zhang, Y., and Xia, Y.: Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir 26, 19001 (2010).CrossRefGoogle ScholarPubMed
2. O'Brien, F.J.: Biomater & scaffolds for tissue engineering. Mater. Today 14, 88 (2011).CrossRefGoogle Scholar
3. Erencia, M., Cano, F., Tornero, J.A., Macanás, J., and Carrillo, F.: Resolving the electrospinnability zones and diameter prediction for the electrospinning of the gelatin/water/acetic acid system. Langmuir 30, 7198 (2014).CrossRefGoogle ScholarPubMed
4. Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., and Lozano, K.: Electrospinning to Forcespinning TM. Mater. Today 13, 12 (2010).CrossRefGoogle Scholar
5. Townsend-Nicholson, A. and Jayasinghe, S.N.: Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7, 3364 (2006).CrossRefGoogle ScholarPubMed
6. Jayasinghe, S.N.: Cell electrospinning: a novel tool for functionalizing fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 138, 2215 (2013).CrossRefGoogle ScholarPubMed
7. Padron, S., Fuentes, A., Caruntu, D., and Lozano, K.: Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 113, 024318 (2013).CrossRefGoogle Scholar
8. Jeong, S.I., Krebs, M.D., Bonino, C.A., Khan, S.A., and Alsberg, E.: Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol. Biosci. 10, 934 (2010).CrossRefGoogle ScholarPubMed
9. Nguyen, V.T., Ko, S.C., Oh, G.W., Heo, S.Y., Jeon, Y.J., Park, W.S., Choi, I.W., Choi, S.W., and Jung, W.K.: Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells. Int. J. Biol. Macromol. 93, 1620 (2016).CrossRefGoogle ScholarPubMed
10. Liu, Y. and Chan-Park, M.B.: A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31, 1158 (2010).CrossRefGoogle ScholarPubMed
11. Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., and Gao, J.: Preparation of aligned porous gelatine scaffolds by unidirectionalfreeze-drying method. Acta Biomater. 6, 1167 (2010).CrossRefGoogle ScholarPubMed
12. Jafari, J., Emami, S.H., Samadikuchaksaraei, A., Bahar, M.A., and Gorjipour, F.: Electrospun chitosan- gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Biomed. Mater. Eng. 21, 99 (2011).Google ScholarPubMed
13. Mobarakeh, L.G., Prabhakaran, M.P., Morshed, M., Esfahani, M.H.N., and Ramakrishna, S.: Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29, 4532 (2008).CrossRefGoogle Scholar
14. Cheng, M., Deng, J., Yang, F., Gong, Y., Zhao, N., and Zhang, X.: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatine solutions. Biomaterials 24, 2871 (2003).CrossRefGoogle Scholar
15. Li, D., Chen, W., Sun, B., Li, H., Wu, T., Ke, Q., Huang, C., Ei-Hamshary, H., Al-Deyab, S.S., and Mo, X.: A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf. B 146, 632 (2016).CrossRefGoogle ScholarPubMed
16. Jiang, Y.C., Jiang, L., Huang, A., Wang, X.F., Li, Q., and Turng, L.S.: Electrospun polycaprolactone/gelatin composites with enhanced cell–matrix interactions as blood vessel endothelial layer scaffolds. Mater. Sci. Eng. C 71, 901 (2017).CrossRefGoogle ScholarPubMed
17. Soto-Oviedo, M.A. and De Paoli, M.A.: Dynamic vulcanization of thermoplastic elastomers based on poly(epichlorohydrin-co-ethylene oxide) and polypropylene. Polym. Bull. 56, 75 (2006).CrossRefGoogle Scholar
18. Da Costa, S.C.G., Goncalves, M.D.C., and Felisberti, M.I.: Blends of polyamide 6 and epichlorohydrin elastomers. I. Graft copolymerization in the melt blending. J. Appl. Polym. Sci. 72, 1827 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
19. Juliana, A.L. and Felisberti, M.I.: Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur. Polym. J. 42, 602 (2006).Google Scholar
20. Zhang, K.Y., Ran, X.H., Wang, X.M., Han, C.Y., Han, L.J., Wen, X., Zhuang, Y., and Dong, L.: Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym. Eng. Sci. 51, 2370 (2011).CrossRefGoogle Scholar
21. Souza, M.A., Sakamoto, K.Y., and Mattoso, L.H.C.: Release of the diclofenac sodium by nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Obtained from electrospinning and solution blow spinning. J. Nanomater. 2014, 1 (2014).CrossRefGoogle Scholar
22. Cooper, D.L. and Harirforoosh, S.: Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS ONE 9, e87326 (2014).CrossRefGoogle ScholarPubMed
23. Italia, J.L., Yahya, M.M., Singh, D., and Ravi Kumar, M.N.: Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm. Res. 26, 1324 (2009).CrossRefGoogle ScholarPubMed
24. Dehar, N., Gupta, A., and Singh, G.: Comparative study of the ocular efficacy and safety of diclofenac sodium (0.1%) ophthalmic solution with that of ketorolac tromethamine (0.5%) ophthalmic solution in patients with acute seasonal allergic conjunctivitis. Int. J. Appl. Basic Med. Res. 2, 25 (2012).CrossRefGoogle ScholarPubMed
25. Kim, C.H., Khil, M.S., Kim, H.Y., Lee, H.U., and Jahng, K.Y.: An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J. Biomed. Mater. Res. B, Appl. Biomater. 78(2), 283 (2006).CrossRefGoogle ScholarPubMed
26. Bolgen, N., Vargel, I., Korkusuz, P., Menceloglu, Y.Z., and Piskin, E.: In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B, Appl. Biomater. 81, 530 (2007).CrossRefGoogle ScholarPubMed
27. Liu, X., Lin, T., Fang, J., Yao, G., Zhao, H., Dodson, M., and Wang, X.: In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J. Biomed. Mater. Res. A 94, 499 (2010).CrossRefGoogle ScholarPubMed
28. Lin, J., Li, C., Zhao, Y., Hu, J., and Zhang, L.M.: Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl. Mater. Interfaces 4, 1050 (2012).CrossRefGoogle ScholarPubMed
29. Webber, M.J., Matson, J.B., Tamboli, V.K., and Stupp, S.I.: Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33, 6823 (2012).CrossRefGoogle ScholarPubMed
30. Sisson, K., Zhang, C., Farach, M.C., Chase, D.B., and Rabolt, J-F.: Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 10, 1675 (2009).CrossRefGoogle ScholarPubMed
Supplementary material: File

Mamidi et al supplementary material

Mamidi et al supplementary material 1

Download Mamidi et al supplementary material(File)
File 21 KB