Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T20:20:38.989Z Has data issue: false hasContentIssue false

Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods

Published online by Cambridge University Press:  22 August 2018

Kamatchi Jothiramalingam Sankaran*
Affiliation:
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
Sujit Deshmukh
Affiliation:
Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
Svetlana Korneychuk
Affiliation:
Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
Chien-Jui Yeh
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Joseph Palathinkal Thomas
Affiliation:
WATLab and Department of Chemistry, University of Waterloo, Waterloo, N2L3G1 Ontario, Canada
Sien Drijkoningen
Affiliation:
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
Paulius Pobedinskas
Affiliation:
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
Marlies K. Van Bael
Affiliation:
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
Johan Verbeeck
Affiliation:
Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
Keh-Chyang Leou
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Kam-Tong Leung
Affiliation:
WATLab and Department of Chemistry, University of Waterloo, Waterloo, N2L3G1 Ontario, Canada
Susanta Sinha Roy
Affiliation:
Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
I-Nan Lin
Affiliation:
Department of Physics, Tamkang University, 251 Tamsui, Taiwan
Ken Haenen*
Affiliation:
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
*
Address all correspondence to Kamatchi Jothiramalingam Sankaran and Ken Haenen at sankaran.kamatchi@uhasselt.be and ken.haenen@uhasselt.be
Address all correspondence to Kamatchi Jothiramalingam Sankaran and Ken Haenen at sankaran.kamatchi@uhasselt.be and ken.haenen@uhasselt.be
Get access

Abstract

Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz., a high current density of 12.0 mA/cm2 and a work function value of 4.5 eV with an applied voltage of 3 V at 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.X., and Melosh, N.A.: Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762 (2010).Google Scholar
2.Lin, I.N., Koizumi, S., Yater, J., and Koeck, F.: Diamond electron emission. MRS Bull. 39, 533 (2014).Google Scholar
3.Wanke, R., Voesch, W., Rastegar, I., Kyriazis, A., Braun, W., and Mannhart, J.: Thermoelectronic energy conversion: concepts and materials. MRS Bull. 42, 518 (2017).Google Scholar
4.Khalid, K.A.A., Leong, T.J., and Mohamed, K.: Review on thermionic energy converters. IEEE Trans. Electron Devices 63, 2231 (2016).Google Scholar
5.Kern, W.A. and Puotinen, D.A.: Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 31, 187 (1970).Google Scholar
6.Williams, O.A., Douheret, O., Daenen, M., Haenen, K., Osawa, E., and Takahashi, M.: Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255 (2007).Google Scholar
7.Tian, S., Li, Y., Xia, X., Gu, C., and Li, J.: Highly efficient field emission from nanodiamond films treated by fast reactive ion etching process. Physica E 43, 1902 (2011).Google Scholar
8.Deshmukh, S., Sankaran, K.J., Srinivasu, K., Korneychuk, S., Banerjee, D., Barman, A., Bhattacharya, G., Phase, D.M., Gupta, M., Verbeeck, J., Leou, K.C., Lin, I.N., Haenen, K., and Roy, S.S.: Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties. Diamond Relat. Mater. 83, 118 (2018).Google Scholar
9.Dato, A., Radmilovic, V., Lee, Z., Philips, J., and Frenklach, M.: Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012 (2008).Google Scholar
10.Kunuku, S., Sankaran, K.J., Tsai, C.Y., Chang, W.H., Tai, N.H., Leou, K.C., and Lin, I.N.: Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications. ACS Appl. Mater. Interfaces 5, 7439 (2013).Google Scholar
11.Zhang, W.J., Wu, Y., Cha, C.Y., Wong, W.K., Meng, X.M., Bello, I., Lifshitz, Y., and Lee, S.T.: Structuring single- and nano-crystalline diamond cones. Diamond Relat. Mater. 13, 1037 (2004).Google Scholar
12.Yang, N., Hiroshi, U., Williams, O.A., Osawa, E., Tokuda, N., and Nebel, C.E.: Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206, 2048 (2009).Google Scholar
13.Kataoka, M., Morioka, N., Kimura, Y., Sobue, S., Kato, H., Takeuchi, D., and Yamasaki, S.: Enhanced thermionic electron emission from a stacked structure of phosphorus-doped diamond with a nitrogen-doped diamond surface layer. Phys. Status Solidi A 213, 2650 (2016).Google Scholar
14.Jin, F., Liu, Y., and Day, C.M.: Thermionic emission from carbon nanotubes with a thin layer of low work function barium strontium oxide surface coating. Appl. Phys. Lett. 88, 163116 (2006).Google Scholar
15.Verbeeck, J. and Van Aert, S.: Model based quantification of EELS spectra. Ultramicroscopy 101, 207 (2004).Google Scholar
16.Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X.: Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions. Appl. Phys. Lett. 64, 1502 (1994).Google Scholar
17.Kovarik, P., Bourdon, E.B.D., and Prince, R.H.: Electron-energy-loss characterization of laser-deposited a-C, a-C:H, and diamond films. Phys. Rev. B 48, 12123 (1993).Google Scholar
18.Yamaguchi, H., Masuzawa, T., Nozue, S., Kudo, Y., Saito, I., Koe, J., Kudo, M., Yamada, T., Takakuwa, Y., and Okano, K.: Electron emission from conduction band of diamond with negative electron affinity. Phys. Rev. B 80, 165321 (2009).Google Scholar
19.Koeck, F.A.M., Nemanich, R.J., Balasubramaniam, Y., Haenen, K., and Sharp, J.: Enhanced thermionic energy conversion and the thermionic emission from doped diamond films through methane exposure. Diamond Relat. Mater. 20, 1229 (2011).Google Scholar
20.Koeck, F.A.M. and Nemanich, R.J.: Substrate-diamond interface considerations for enhanced thermionic electron emission from nitrogen doped diamond films. J. Appl. Phys. 112, 113707 (2012).Google Scholar
21.Paxton, W.F., Howell, M., and Kang, W.P.: Influence of hydrogen on the thermionic electron emission from nitrogen-incorporated polycrystalline diamond films. J. Vac. Sci. Technol. B 30, 021202 (2012).Google Scholar
22.Kato, H., Takeuchi, D., Ogura, M., Yamada, T., Kataoka, M., Kimura, Y., Sobue, S., Nebel, C.E., and Yamasaki, S.: Heavily phosphorus-doped nano-crystalline diamond electrode for thermionic emission application. Diamond Relat. Mater. 63, 165 (2016).Google Scholar
23.Koeck, F.A.M., Garguilo, J.M., and Nemanich, R.J.: Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films. Diamond Relat. Mater. 14, 704 (2005).Google Scholar
24.Koeck, F.A.M. and Nemanich, R.J.: Sulfur doped nanocrystalline diamond films as field enhancement based thermionic emitters and their role in energy conversion. Diamond Relat. Mater. 14, 2051 (2005).Google Scholar
Supplementary material: File

Sankaran et al. supplementary material

Sankaran et al. supplementary material 1

Download Sankaran et al. supplementary material(File)
File 1.8 MB