Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T22:22:18.219Z Has data issue: false hasContentIssue false

Experimental determination of phonon thermal conductivity and Lorenz ratio of single-crystal bismuth telluride

Published online by Cambridge University Press:  25 October 2017

Mengliang Yao
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
Cyril Opeil*
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
Stephen Wilson
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106, USA
Mona Zebarjadi
Affiliation:
Department of Electrical and Computer Engineering and Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
*
Address all correspondence to Cyril Opeil at opeil@bc.edu
Get access

Abstract

We use a magnetothermal resistance method to measure the lattice thermal conductivity of single-crystal Bi2Te3 from 5 to 60 K. Lattice thermal conductivity is calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. Our results show that the measured phonon thermal conductivity follows the ${\rm e}^{{\it\Delta} _{{\rm min}}/T}$ temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. Our low-temperature experimental data and analysis on Bi2Te3 are a complement to previous measurements of Goldsmid (Ref. 17) and theoretical calculations by Hellman et al. (Ref. 18) at higher temperature 100–300 K.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lifshitz, E.M. and Pitaevskii, L.P.: Physical Kinetics (Butterworth-Heinemann, Oxford, 1981).Google Scholar
2. Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).Google Scholar
3. Lukas, K.C., Liu, W.S., Joshi, G., Zebarjadi, M., Dresselhaus, M.S., Ren, Z.F., Chen, G., and Opeil, C.P.: Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12 . Phys. Rev. B 85, 205410 (2012).Google Scholar
4. Yao, M., Zebarjadi, M., and Opeil, C.: Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu and Zn. J. Appl. Phys. 122, 135111 (2017).Google Scholar
5. Uher, C. and Goldsmid, H.J.: Separation of the electronic and lattice thermal conductivities in bismuth crystals. Phys. Stat. Solidi (b) 65, 765 (1974).Google Scholar
6. Pippard, A.B.: Magnetoresistance in Metals (Cambridge University Press, Cambridge, 1989).Google Scholar
7. Zhang, Q., Lan, Y., Yang, S., Cao, F., Yao, M., Opeil, C., Broido, D., Chen, G., and Ren, Z.: Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20−xClx . Nano Energy 2, 1121 (2013).Google Scholar
8. Liu, W., Guo, C.F., Yao, M., Lan, Y., Zhang, H., Zhang, Q., Chen, S., Opeil, C.P., and Ren, Z.: Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy 4, 113 (2014).CrossRefGoogle Scholar
9. Liu, W., Kim, H.S., Chen, S., Jie, Q., Lv, B., Yao, M., Ren, Z., Opeil, C.P., Wilson, S., Chu, C.-W., and Ren, Z.: n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc. Natl. Acad. Sci. USA 112, 3269 (2015).Google Scholar
10. Zhang, Q., Chere, E.K., McEnaney, K., Yao, M., Cao, F., Ni, Y., Chen, S., Opeil, C., Chen, G., and Ren, Z.: Enhancement of thermoelectric performance of n-type PbSe by Cr doping with optimized carrier concentration. Adv. Energy Mater. 5, 1401977 (2015).Google Scholar
11. Armitage, D. and Goldsmid, H.J.: The thermal conductivity of cadmium arsenide. J. Phys. C 2, 2138 (1969).CrossRefGoogle Scholar
12. Keys, J.D. and Dutton, H.M.: Diffusion and solid solubility of silver in single-crystal bismuth telluride. J. Phys. Chem. Solids 24, 563 (1963).Google Scholar
13. Dibbs, H.P. and Tremblay, J.R.: Thermal diffusion of silver in single-crystal bismuth telluride. J. Appl. Phys. 39, 2976 (1968).Google Scholar
14. Lin, W., Wesolowski, D., and Lee, C.: Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules. J. Mater. Sci.: Mater. Electron 22, 1313 (2011).Google Scholar
15. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., and Zhang, S.-C.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).Google Scholar
16. Ishiwata, S., Shiomi, Y., Lee, J.S., Bahramy, M.S., Suzuki, T., Uchida, M., Arita, R., Taguchi, Y., and Tokura, Y.: Extremely high electron mobility in a phonon-glass semimetal. Nature Mater. 12, 512 (2013).Google Scholar
17. Goldsmid, H.: The thermal conductivity of bismuth telluride. Proc. Phys. Soc. Sec. B 69, 203 (1956).Google Scholar
18. Hellman, O. and Broido, D.A.: Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90, 134309 (2014).Google Scholar
19. Price, P.J.: Anomalous Lorenz numbers in mixed semiconductors. Proc. Phys. Soc. Sec. B 69(8), 851 (1956).Google Scholar
20. Hinsche, N.F., Mertig, I., and Zahn, P.: Lorenz function of Bi2Te3/Sb2Te3 superlattices. J. Electron. Mater. 42, 1406 (2013).Google Scholar
21. Harman, T.C., Paris, B., Miller, S.E., and Georing, H.L.: Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3 . J. Phys. Chem. Solids 2, 181 (1957).Google Scholar
22. Putley, E.H.: Galvano- and thermo-magnetic coefficients for a multi-band conductor. J. Phys. C: Solid State Phys. 8, 1837 (1975).Google Scholar
23. Harman, T.C. and Honig, J.M.: Theory of Galvano-thermomagnetic energy conversion devices. I. Generators. J. Appl. Phys. 33, 3178 (1962).CrossRefGoogle Scholar
24. Harman, T.C. and Honig, J.M.: Theory of Galvano-thermomagnetic energy conversion devices. II. Refrigerators and heat pumps. J. Appl. Phys. 33, 3188 (1962).Google Scholar