Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T13:34:14.655Z Has data issue: false hasContentIssue false

Epitaxy growth and characterization of InAs p-i-n photodetector through ion exchange for mid-infrared detection on Si substrates

Published online by Cambridge University Press:  08 August 2018

Wan Khai Loke*
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
Kian Hua Tan
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
Satrio Wicaksono
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
Soon Fatt Yoon
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
*
Address all correspondence to Wan Khai Loke at ewkloke@ntu.edu.sg
Get access

Abstract

We report an epitaxy growth and characterization of InAs photodetector (PD) on virtual Ge/Si and GaP/Si substrates. The effect of different types of the virtual substrate on the structure and performance of the InAs PD was studied. Although the lattice mismatch between InAs and Si is large (11.6%), close to 100% relaxation of InAs was achieved on both virtual substrates. A higher surface roughness was observed in the InAs layer grown GaP/Si as compared with that of Ge/Si. InAs PD with room temperature blackbody specific detectivity of ~5 × 108 cm·Hz1/2/W is achieved in photovoltaic mode on both types of virtual substrate.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rogalski, A.: Infrared detectors: status and trends. Prog. Quantum Electron. 27 59210 (2003).Google Scholar
2.Kvisteroy, T., Jakobsen, H., Vieider, C., Wissmar, S., Ericsson, R., Halldin, U., Niklaus, F., Forsberg, F., Stemme, G., Kallhammer, J.E., Pettersson, H., Eriksson, D., Franks, J., VanNylen, J., Vercammen, H., and VanHulsel, A.: Far infrared low-cost uncooled bolometer for automotive use. Adv. Microsyst. Automot. Appl. 2007, 265 (2007).Google Scholar
3.Reago, D.A., Horn, S., Campbell, J., and Vollmerhausen, R.: Third generation imaging sensor system concepts. Infrared Imaging Syst.: Design Analysis Modeling Testing X. 3701, 108117 (1999).Google Scholar
4.Vieider, C., Wissmar, S., Ericsson, P., Halldin, U., Niklaus, F., Stemme, G., Kallhammer, J.E., Pettersson, H., Eriksson, D., Jakobsen, H., Kvisteroy, T., Franks, J., VanNylen, J., Vercammen, H., and VanHulsel, A.: Low-cost far infrared bolometer camera for automotive use. Infrared Technol. Appl. Xxxiii, 6542 (2007).Google Scholar
5.Forsberg, F., Lapadatu, A., Kittilsland, G., Martinsen, S., Roxhed, N., Fischer, A.C., Stemme, G., Samel, B., Ericsson, P., Hoivik, N., Bakke, T., Bring, M., Kvisteroy, T., Ror, A., and Niklaus, F.: CMOS-integrated Si/SiGe quantum-well infrared microbolometer focal plane arrays manufactured with very large-scale heterogeneous 3-D integration. IEEE J. Sel. Top. Quantum Electron. 21, 111 (2015).Google Scholar
6.Omar, M. and Zhou, Y.: Pedestrian tracking routine for passive automotive night vision systems. Sens. Rev. 27, 310316 (2007).Google Scholar
7.Zhou, Y., Mayyas, A., Qattawi, A., and Omar, M.: Feature-level and pixel-level fusion routines when coupled to infrared night-vision tracking scheme. Infrared Phys. Technol. 53, 4349 (2010).Google Scholar
8.Lei, W., Antoszewski, J., and Faraone, L.: Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2, 4 (2015).Google Scholar
9.Tidrow, M.Z., Beck, W.A., Clark, W.W., Pollehn, H.K., Little, J.W., Dhar, N.K., Leavitt, R.P., Kennerly, S.W., Beekman, D.W., Goldberg, A.C., and Dyer, W.R.: Device physics and focal plane array applications of QWIP and MCT. Photodetectors: Mater. Devices IV. 3629, 100113 (1999).Google Scholar
10.Sarney, W.L., Svensson, S.P., Xu, Y., Donetsky, D., and Belenky, G.: Bulk InAsSb with 0.1 eV bandgap on GaAs. J. Appl. Phys. 122, 2 (2017).Google Scholar
11.Okamoto, H. and Oe, K.: Structural and energy-gap characterization of metalorganic-vapor-phase-epitaxy-grown InAsBi. Japanese J. Appl. Phys. Part 1-Regular Papers Short Notes Rev. Papers. 38, 10221025 (1999).Google Scholar
12.Samajdar, D.P. and Dhar, S.: Valence band structure of InAs1-xBix and InSb1-xBix alloy semiconductors calculated using valence band anticrossing model. Sci. World J. 2014, 704830 (2014).Google Scholar
13.Zhang, Y.Y., Haddadi, A., Chevallier, R., Dehzangi, A., and Razeghi, M.: Thin-film antimonide-based photodetectors integrated on Si. IEEE J. Quantum Electron. 54, 2 (2018).Google Scholar
14.Yadav, S., Tan, K.H., Kumar, A., Goh, K.H., Liang, G.C., Yoon, S.F., Gong, X., and Yeo, Y.C.: Monolithic integration of InAs quantum-well n-MOSFETs and ultrathin body ge p-MOSFETs on a Si substrate. IEEE Trans. Electron Devices. 64, 353360 (2017).Google Scholar
15.Nguyen, X.S., Yadav, S., Lee, K.H., Kohen, D., Kumar, A., Made, R.I., Lee, K.E.K., Chua, S.J., Gong, X., and Fitzgerald, E.A.: MOCVD growth of high quality InGaAs HEMT layers on large scale Si wafers for heterogeneous integration with Si CMOS. IEEE Trans. Semiconductor Manufac. 30, 456461 (2017).Google Scholar
16.Kumar, A., Lee, S.Y., Yadav, S., Tan, K.H., Loke, W.K., Dong, Y., Lee, K.H., Wicaksono, S., Liang, G.C., Yoon, S.F., Antoniadis, D., Yeo, Y.C., and Gong, X.: Integration of InGaAs MOSFETs and GaAs/AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs). Optics Express 25, 3185331862 (2017).Google Scholar
17.Goh, K.H., Yadav, S., Low, K.L., Liang, G., Gong, X., and Yeo, Y.C.: Gate-all-around In0.53Ga0.47As junctionless nanowire FET with tapered source/drain structure. IEEE Trans. Electron Devices 63, 10271033 (2016).Google Scholar
18.Yadav, S., Tan, K.H., Annie, , Goh, K.H., Subramanian, S., Low, K.L., Chen, N.Y., Jia, B.W., Yoon, S.F., Liang, G., Gong, X., and Yeo, Y.C.: First Monolithic Integration of Ge P-FETs and InAs N-FETs on Silicon Substrate: Sub-120 nm III-V Buffer, Sub-5 nm Ultra-thin Body, Common Raised S/D, and Gate Stack Modules. 2015 IEEE International Electron Devices Meeting (IEDM). (2015).Google Scholar
19.Lee, K.H., Bao, S.Y., Fitzgerald, E., and Tan, C.S.: Integration of III-V materials and Si-CMOS through double layer transfer process. Jpn. J. Appl. Phys. 54, 3 (2015).Google Scholar
20.Lee, K.H., Bao, S.Y., Chong, G.Y., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient. APL Mater. 3, 1 (2015).Google Scholar
21.Lee, K.H., Jandl, A., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber. AIP. Adv. 3, 9 (2013).Google Scholar
22.Huang, X., Song, Y., Masuda, T., Jung, D., and Lee, M.: InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electron. Lett. 50, 1226- (2014).Google Scholar
23.Rogalski, A., Antoszewski, J., and Faraone, L.: Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 9 (2009).Google Scholar
24.Tan, K.H., Jia, B.W., Loke, W.K., Wicaksono, S., and Yoon, S.F.: Formation of interfacial misfit dislocation in GaSb/GaAs heteroepitaxy via anion exchange process. J Crystal Growth. 427, 8086 (2015).Google Scholar
25.Loke, W.K., Tan, K.H., Li, D., Wicaksono, S., and Yoon, S.F.: Mid-infrared InAs photodetector grown on GaAs substrate through cation exchange. IEEE Photonics Technol. Lett. 29, 458461 (2017).Google Scholar