Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T22:35:30.362Z Has data issue: false hasContentIssue false

Epitaxial growth of Ba2YNbO6 films on biaxially-textured NiW substrates as a multifunctional single buffer layer for high Jc epitaxial YBCO film

Published online by Cambridge University Press:  01 September 2015

Sung Hun Wee*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Claudia Cantoni
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Amit Goyal
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Departments of Chemical Biological Engineering, Physics, and Electrical Engineering, SUNY, University at Buffalo, Buffalo, NY 14260, USA
*
Address all correspondence to Sung Hun Wee atsunghunwee@gmail.com
Get access

Abstract

Epitaxial Ba2YNbO6 (BYNO) films were deposited on textured NiW substrates via pulsed laser deposition. The films have dense and smooth surface structure, and more importantly, significantly improved out-of-plane texture, compared with the NiW substrate texture. Transmission electron microscopy study confirms the c-axis tilting of BYNO film and formation of misfit dislocations at NiW/BYNO interface, suggesting that the improved texture should be attributed to the tilted epitaxy via biased dislocation mechanism. YBa2Cu3O7−δ films deposited on BYNO single-buffered NiW substrates show further texture improvement, high superconducting transition temperature of ~91 K, and critical current density of 1.8 MA/cm2 at 77 K, self-field.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goyal, A. (ed.): Second Generation HTS Conductors (Kluwer Academic, Boston, MA, 2004).Google Scholar
2.Wee, S.H., Shin, J., Cantoni, C., Zuev, Y.L., Cook, S., and Goyal, A.: Multifunctional, phase-separated, BaTiO3+CoFe2O4 cap buffer layers for improved flux-pinning in YBa2Cu3O7−δ based coated conductors. Supercond. Sci. Technol. 23, 0140074 (2010).CrossRefGoogle Scholar
3.Zhao, Y., Pu, M.H., Li, G., Du, X.H., Zhou, H.M., Zhang, Y.B., Yang, X.S., Wang, Y., Sun, R.P., and Cheng, C.H.: Development of a new series of buffer layers for REBCO coated conductors. Physica C 463–465, 574579 (2007).Google Scholar
4.Henmi, K. and Hiantsu, Y.: Crystal structures and magnetic properties of ordered perovskites Ba2LnNbO6 (Ln=Lantanide Elements). J. Solid State Chem. 148, 353 (1999).Google Scholar
5.Koshy, J., Kurian, J., Thomas, J.K., Yadava, Y.P., and Damdaran, A.D.: Rare-earth barium niobates: a new class of potential substrates for YBa2Cu3O7−δ superconductor. Jpn. J. Appl. Phys. 33, 117 (1994).Google Scholar
6.Paulose, K.V., Koshy, J., and Damodaran, A.D.: YBa2NbO6: synthesis, properties and compatibility with YBa2Cu3O7−δ. Physica C 193, 273276 (1992).Google Scholar
7.Kurian, J., John, A.M., Sajith, P.K., Koshy, J., Pai, S.P., and Pinto, R.: Growth of ABCO-Ag thin films (T c (0)=90 K) by pulsed laser ablation on polycrystalline Ba2NdNbO6; a new perovskite ceramic substrate for YBCO films. Jpn. J. Appl. Phys. 37, L1144L1147 (1998).Google Scholar
8.Nair, S.U.K. and Warrior, P.R.S.: Ba2HoNbO6: a new perovskite ceramic substrate for superconducting YBa2Cu3O7−δ thick films (T c (0)=92 K). J. Mater. Sci. 38, 481483 (2003).Google Scholar
9.Sathiraju, S., Barnes, P.N., Varanasi, C., and Wheeler, R.: Studies on Ba2YNbO6 buffer layers for subsequent YBa2Cu3O7−x film growth. IEEE Trans. Appl. Supercond. 15, 30093012 (2005).Google Scholar
10.Wee, S.H., Goyal, A., Zuev, Y.L., Cantoni, C., Selvamanickam, V., and Specht, E.D.: Formation of self-assembled, double-perovskite, Ba2YNbO6 nanocolumns and their contribution to flux-pinning and Jc in Nb-doped YBa2Cu3O7−δ films. Appl. Phys. Exp. 3, 023101 (2010).Google Scholar
11.Feldmann, D.M., Holesinger, T.G., Maiorov, B., Foltyn, S.R., Coulter, J.Y., and Apodaca, I.: Improved flux pinning in YBa2Cu3O7 with nanorods of the double perovskite Ba2YNbO6. Supercond. Sci. Technol. 23, 095004 (2010).Google Scholar
12.Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morrell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., Martin, P.M., and Schoop, U.: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 1923 (1999).Google Scholar
13.Cantoni, C., Goyal, A., Schoop, U., Li, X., Rupich, M.W., Thieme, C., Gapud, A.A., Kodenkandath, T., Aytug, T., Paranthaman, M., Kim, K., Budai, J.D., and Christen, D.K.: Investigation of TiN seed layers for RABiTS architectures with a single-crystal-like out-of-plane texture. IEEE Trans. Appl. Supercond. 15, 30093012 (2005).Google Scholar
14.Cantoni, C., Specht, E.D., Goyal, A., Li, X., and Rupich, M.: Influence of oxygen deficiency on the out-of-plane tilt of epitaxial Y2O3 films on Ni–5%W tapes. J. Mater. Res. 24, 520525 (2009).Google Scholar
15.Nagai, H.: Structure of vapor-deposited GaxIn1–xAs crystals. J. Appl. Phys. 45, 3789 (1974).Google Scholar
16.Olsen, G.H. and Smith, R.T.: Misorientation and tetragonal distortion in heteroepitaxial vapor-grown III–V structures. Phys. Status Solidi A 31, 739 (1975).Google Scholar
17.Wee, S.H., Goyal, A., Martin, P.M. and Heatherly, L.: High in-field critical current densities in epitaxial NdBa2Cu3O7−δ thin films on RABiTS by pulsed laser deposition. Supercond. Sci. Technol. 19, 865 (2006).Google Scholar
18.Leonard, K.J., Goyal, A., Kang, S., Yaborough, K.A., and Kroeger, D.M.: Identification of a self-limiting reaction layer in Ni-3 at.% W rolling-assisted biaxially textured substrates. Supercond. Sci. Technol. 17, 1295 (2004).Google Scholar