Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T20:16:06.576Z Has data issue: false hasContentIssue false

Enhancing ionic conductivity with fluorination in organosilyl solvents for lithium-ion battery electrolytes

Published online by Cambridge University Press:  26 September 2019

Leslie J. Lyons*
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA50112, USA
Tom Derrah
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA50112, USA
Steven Sharpe
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA50112, USA
Seiyoung Yoon
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA50112, USA
Scott Beecher
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA50112, USA
Monica Usrey
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI53706, USA
Adrián Peña-Hueso
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI53706, USA
Tobias Johnson
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI53706, USA
Robert West
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI53706, USA
*
Address all correspondence to Leslie J. Lyons at lyons@grinnell.edu
Get access

Abstract

Increasing fluorination of organosilyl nitrile solvents improves ionic conductivities of lithium salt electrolytes, resulting from higher values of salt dissociation. Ionic conductivities at 298 K range from 1.5 to 3.2 mS/cm for LiPF6 salt concentrations at 0.6 or 0.7 M. The authors also report on solvent blend electrolytes where the fluoroorganosilyl (FOS) nitrile solvent is mixed with ethylene carbonate and diethyl carbonate. Ionic conductivities of the FOS solvent/carbonate blend electrolytes increase achieving ionic conductivities at 298 K of 5.5–6.3 mS/cm and salt dissociation values ranging from 0.42 to 0.45. Salt dissociation generally decreases with increasing temperature.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scrosati, B.: Lithium batteries: from early stages to the future. In Lithium Batteries: Advanced Technologies and Applications, edited by Abraham, K.M., van Schalkwijk, W., and Hassoun, J. (Wiley: NJ, 2013), Chapter 2, pp. 2138.CrossRefGoogle Scholar
2.Aurbach, D. and Schecter, A.: Advanced liquid electrolytes. In Lithium Batteries: Science and Technology, edited by Nazri, G.A. and Pistoia, G. (Springer: New York, 2003), Chapter 18, pp. 530573.CrossRefGoogle Scholar
3.Rossi, N.A.A. and West, R.: Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym. Int. 58, 267272 (2009).CrossRefGoogle Scholar
4.Flashpoint of diethyl carbonate is tabulated in https://www.sigmaaldrich.com/catalog/product/aldrich/d91551?lang=en&region=US (accessed May 6, 2019).Google Scholar
5.Peña Hueso, J.A., Osmalov, D., Dong, J., Usrey, M., Pollina, M., and West, R.C.: Nitrile-substituted silanes and electrolyte compositions and electrochemical devices containing them. U.S. Patent No. 0356735A1, 2014.Google Scholar
6.Guillot, S.L., Peña Hueso, A., Usrey, M.L., and Hamers, R.J.: Thermal and hydrolytic decomposition mechanisms of organosilicon electrolytes with enhanced thermal stability for lithium-ion batteries. J. Electrochem. Soc. 164, A1907A1917 (2017).CrossRefGoogle Scholar
7.Chen, X., Usrey, M., Peña Hueso, A., West, R., and Hamers, R.J.: Thermal and electrochemical stability of organosililcon electrolytes for lithium-ion batteries. J. Power Sources 241, 311319 (2013).CrossRefGoogle Scholar
8.Ma, Q. and Mandal, B.K.: Highly conductive electrolytes derived from nitrile solvents. J. Electrochem. Soc. 162, A1276A1281 (2015).CrossRefGoogle Scholar
9.Xie, B., Mai, Y., Wang, J., Luo, H., Yan, X., and Zhang, L.: Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics 21, 909915 (2015).CrossRefGoogle Scholar
10.Farhat, D., Ghamouss, F., Maiback, J., Edstrom, K., and Lemordant, D.: Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. ChemPhysChem 18, 113 (2017).CrossRefGoogle ScholarPubMed
11.Rohan, R., Kuo, T.-C., Lin, J.-H., Hsu, Y.-C., Li, C.-C., and Lee, J.-T.: Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles. J. Phys. Chem. C 120, 64506458 (2016).CrossRefGoogle Scholar
12.Pohl, B., Grunebaum, M., Drews, M., Passerini, S., Winter, M., and Wiemhofer, H.-D.: Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 180, 795800 (2015).CrossRefGoogle Scholar
13.Pohl, B. and Wiemhofer, H.-D.: Highly thermal and electrochemical stable dinitrile disiloxane as Co-solvent for use in lithium-ion batteries. J. Electrochem. Soc. 162, A460A464 (2015).CrossRefGoogle Scholar
14.Horowitz, Y., Ben-Barak, I., Schneier, D., Goor-Dar, M., Kasnatscheew, J., Meister, P., Grunebaum, M., Wiemhofer, H.-D., Winter, M., Golodnitsky, D., and Peled, E.: Study of the formation of a solid electrolyte interphase (SEI) on a silicon nanowire anode in liquid disiloxane electrolyte with nitrile end groups for lithium-ion batteries. Batteries Supercaps 2, 213222 (2019).CrossRefGoogle Scholar
15.Wang, J., Yong, T., Yang, J., Ouyand, C., and Zhang, L.: Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Adv. 5, 1766017666 (2015).CrossRefGoogle Scholar
16.Phillip, M., Bhandary, R., Groche, F.J., Schonhoff, M., and Rieger, B.: Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes. Electrochim. Acta 173, 687697 (2015).CrossRefGoogle Scholar
17.Peña Hueso, J.A., Dong, J., Pollina, M., Usrey, M.L., Hamers, R.J., West, R.C., and Osmalov, D.: Halogenated organosilicon electrolytes, methods of using them, and electrochemical devices containing them. U.S. Patent No. 0270573A1, 2015.Google Scholar
18.Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 1150411593 (2014).CrossRefGoogle ScholarPubMed
19.Ueda, S., Yamada, K., Konno, K., Hoshino, M., Kojima, K., and Tanaka, N.: A theoretical study of growth of solid-electrolyte-interphase films in lithium-ion batteries with organosilicon compounds. MRS Adv. 4, 801806 (2019).CrossRefGoogle Scholar
20.Lyons, L.J., Pena-Hueso, A., Johnson, T., and West, R.: Silyl and silyl/carbonate blend electrolytes for lithium-ion battery applications. ECS Trans. 73, 281288 (2016).CrossRefGoogle Scholar
21.Barth, W.V., Pen᷉a-Hueso, A., Zhou, L., Lyons, L.J., and West, R.: Ionic conductivity studies of LiBOB-doped silyl solvent blend electroltyes for lithium-ioin battery applications. J. Power Sources 272, 190195 (2014).CrossRefGoogle Scholar
22.Lyons, L.J., Beecher, S., Cunningham, E., Derrah, T., Su, S., Zhu, J., Usrey, M., Pen᷉a-Hueso, A., Johnson, T., and West, R.: Enhanced lithium ion transport in organosilyl electrolytes for lithium-ion battery applications. MRS Commun. (2019), in press.Google Scholar
23.MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., and Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 49624967 (2009).CrossRefGoogle ScholarPubMed
24.Hayamizu, K.: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate + diethyl carbonate binary solutions of LiPF6 studied by NMR. J. Chem. Eng. Data 57, 20122017 (2012).CrossRefGoogle Scholar
25.Nakanishi, A., Ueno, K., Watanabe, D., Ugata, Y., Matsumae, Y., Liu, J., Thomas, M.L., Dokko, K., and Watanabe, M.: Sulfolane-based highly concentrated electrolytes of lithium bis(Trifluoromethanesulfonyl)amide: ionic transport, Li ion coordination and Li-S battery performance. J. Phys. Chem. C (2019). Accepted. doi: 10.1021/acs.jpcc.9b02625.CrossRefGoogle Scholar
26.Richardson, P.M., Voice, A.M., and Ward, I.M.: Pulsed-field gradient NMR self diffusion and ionic conductivity measurements for liquid electrolytes containing LiBF4 and propylene carbonate. Electrochim. Acta 130, 606618 (2014).CrossRefGoogle Scholar
Supplementary material: PDF

Lyons et al. supplementary material

Lyons et al. supplementary material

Download Lyons et al. supplementary material(PDF)
PDF 484 KB