Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T17:08:58.382Z Has data issue: false hasContentIssue false

Enhancement of dielectric properties with the addition of bromine and dopamine modified barium titanate particles to silicone rubber

Published online by Cambridge University Press:  07 November 2016

Liang Jiang*
Affiliation:
Centre for Elastomer Research, Focas Research Institute, Dublin Institute of Technology, Dublin 8, Ireland
David Kennedy
Affiliation:
Department of Mechanical Engineering, Dublin Institute of Technology, Dublin 1, Ireland
Stephen Jerrams
Affiliation:
Centre for Elastomer Research, Focas Research Institute, Dublin Institute of Technology, Dublin 8, Ireland
Anthony Betts
Affiliation:
Applied Electrochemistry Group, Focas Research Institute, Dublin Institute of Technology, Dublin 8, Ireland
*
Address all correspondence to Liang Jiang at liang.jiang@mydit.ie
Get access

Abstract

Dual-coated barium titanate (BT) particles were prepared using dopamine (DP) in conjunction with bromine (Br) in order to enhance the dielectric constant of silicone rubber (SR) composites containing evenly distributed BT particles. The results showed that both DP and Br were deposited on the BT particles. The dielectric constant of the SR/BT composite was significantly increased from 3.6 to 4.7 at 1 kHz with the addition of BT modified with dopamine (DP–BT). Moreover, the dielectric constant further rose to 4.9 at 1 kHz when the DP–BT particle was grafted with bromine (Br–DP–BT).

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836 (2000).Google Scholar
2. Brochu, P. and Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10 (2010).Google Scholar
3. Giousouf, M. and Kovacs, G.: Dielectric elastomer actuators used for pneumatic valve technology. Smart Mater. Struct. 22, 6 (2013).Google Scholar
4. Romasanta, L.J., Lopez-Manchado, M.A., and Verdejo, R.: Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Sci. 51, 188 (2015).Google Scholar
5. Pelrine, R., Kornbluh, R., and Kofod, G.: High-strain actuator materials based on dielectric elastomers. Advan. Mater. 12, 1223 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
6. Shankar, R., Ghosh, T.K., and Spontak, R.J.: Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3, 1116 (2007).Google Scholar
7. Liu, H.L., Zhang, L.Q., Yang, D., Yu, Y.C., Yao, L., and Tian, M.: Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2 . Soft Mater. 11, 363 (2013).Google Scholar
8. Ouyang, G., Wang, K., and Chen, X.Y.: TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant. J. Micromech. Microeng. 22, 074002 (2012).Google Scholar
9. Kontos, A.I., Kontos, A.G., Tsoukleris, D.S., Bernard, M.-C., Spyrellis, N., and Falaras, P.: Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques. J. Mater. Process. Technol. 196, 243 (2008).CrossRefGoogle Scholar
10. Gallone, G., Carpi, F., De Rossi, D., Levita, G., and Marchetti, A.: Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate. Mater. Sci. Eng. C 27, 110 (2007).Google Scholar
11. Yang, D., Zhang, L., Liu, H., Dong, Y., Yu, Y., and Tian, M.: Lead magnesium niobate-filled silicone dielectric elastomer with large actuated strain. J. Appl. Polym. Sci. 125, 2196 (2012).Google Scholar
12. Yang, D., Ge, F., Tian, M., Ning, N., Zhang, L., Zhao, C., Ito, K., Nishi, T., Wang, H., and Luan, Y.: Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J. Mater. Chem. A 3, 9468 (2015).Google Scholar
13. Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., and Perry, J.W.: Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001 (2007).Google Scholar
14. Romasanta, L., Hernández, M., López-Manchado, M., and Verdejo, R.: Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res. Lett. 6, 1 (2011).Google Scholar
15. Yun, W.S., Urban, J.J., Gu, Q., and Park, H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447 (2002).Google Scholar
16. Luo, B.C., Wang, X.H., Wang, Y.P., and Li, L.T.: Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 510 (2014).Google Scholar
17. Lin, M.-F., Thakur, V.K., Tan, E.J., and Lee, P.S.: Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv. 1, 576 (2011).Google Scholar
18. Yang, D., Tian, M., Li, D., Wang, W., Ge, F., and Zhang, L.: Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization. J. Mater. Chem. A 1, 12276 (2013).Google Scholar
19. Ren, P., Wu, C., and Ponder, J.W.: Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theory Comput. 7, 3143 (2011).Google Scholar
20. Janoschek, R., Weidemann, E.G., Pfeiffer, H., and Zundel, G.: Extremely high polarizability of hydrogen bonds. J. Am. Chem. Soc. 94, 2387 (1972).Google Scholar
21. Greff, S., Zubia, M., Genta-Jouve, G., Massi, L., Perez, T., and Thomas, O.P.: Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis . J. Nat. Prod. 77, 1150 (2014).Google Scholar
22. Jiang, L., Betts, A., Kennedy, D., and Jerrams, S.: Improving the electromechanical performance of dielectric elastomers using silicone rubber and dopamine coated barium titanate. Mater. Des. 85, 733 (2015).Google Scholar
23. Shevchenko, V.P., Nagaev, I.Y., Shevchenko, K.V., Chernysheva, M.G., Badun, G.A., Fedoseev, V.M., and Myasoedov, N.F.: Solid-phase synthesis of deuterium- and tritium-labeled dopamine using carbon nanomaterials. Radiochemistry 53, 336 (2011).Google Scholar
24. Rolland, P., Carlino, V., and Vane, R.: Improved carbon analysis with evactron plasma cleaning. Microsc. Microanal. 10, 964 (2004).Google Scholar
25. Racles, C., Cazacu, M., Fischer, B., and Opris, D.M.: Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators. Smart Mater. Struct. 22, 10 (2013).Google Scholar
26. Sharma, M., Madras, G., and Bose, S.: Process induced electroactive [small beta]-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys. Chem. Chem. Phys. 16, 14792 (2014).Google Scholar
27. Yang, D., Ruan, M., Huang, S., Wu, Y., Li, S., Wang, H., Ao, X., Liang, Y., Guo, W., and Zhang, L.: Dopamine and silane functionalized barium titanate with improved electromechanical properties for silicone dielectric elastomers. RSC Adv. 6, 90172 (2016).Google Scholar