Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T20:22:12.076Z Has data issue: false hasContentIssue false

Emulating homeoplasticity phenomena with organic electrochemical devices

Published online by Cambridge University Press:  04 April 2018

Dimitrios A. Koutsouras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
George G. Malliaras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
Paschalis Gkoupidenis*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
*
Address all correspondence to Paschalis Gkoupidenis at gkoupidenis@mpip-mainz.mpg.de
Get access

Abstract

Biologic neural networks are immersed in common electrolyte environment, and homeoplasticity or global factors of this environment are forcing specific normalization functions that regulate the overall network behavior. In this work, a common electrolyte is used to gate a grid of organic electrochemical devices. The electrolyte functions as a global parameter that controls collectively the device grid. Statistical analysis of the grid and the subsequent definition of global metrics reveal that the grid behaves similarly to a single device. This global control modulates the gain of the device grid, a phenomenon analog to multiplicative scaling in biologic networks. This work demonstrates the potential use of electrolytes as homeostatic media in neuromorphic device architectures.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany

Present address: Department of Engineering, Department of Electrical Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

References

1.Kuzum, D., Jeyasingh, R.G.D., Lee, B., and Wong, H.-S.P.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 21792186 (2012).Google Scholar
2.Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., and Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591595 (2011).Google Scholar
3.Zhu, L.Q., Wan, C.J., Guo, L.Q., Shi, Y., and Wan, Q.: Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).Google Scholar
4.Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., and Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 12971301 (2010).Google Scholar
5.Alibart, F., Pleutin, S., Guérin, D., Novembre, C., Lenfant, S., Lmimouni, K., Gamrat, C., and Vuillaume, D.: An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330337 (2010).Google Scholar
6.van de Burgt, Y., Lubberman, E., Fuller, E.J., Keene, S.T., Faria, G.C., Agarwal, S., Marinella, M.J., Talin, A.A., and Salleo, A.: A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414 (2017).Google Scholar
7.Rivnay, J., Owens, R.M., and Malliaras, G.G.: The rise of organic bioelectronics. Chem. Mater. 26, 679685 (2014).Google Scholar
8.Someya, T., Bao, Z., and Malliaras, G.G.: The rise of plastic bioelectronics. Nature 540, 379 (2016).Google Scholar
9.Berggren, M. and Richter-Dahlfors, A.: Organic bioelectronics. Adv. Mater. 19, 32013213 (2007).CrossRefGoogle Scholar
10.White, H.S., Kittlesen, G.P., and Wrighton, M.S.: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 53755377 (1984).Google Scholar
11.Bernards, D.A. and Malliaras, G.G.: Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 35383544 (2007).CrossRefGoogle Scholar
12.Gkoupidenis, P., Schaefer, N., Garlan, B., and Malliaras, G.G.: Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 71767180 (2015).Google Scholar
13.Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J.A., and Malliaras, G.G.: Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015).Google Scholar
14.Gkoupidenis, P., Koutsouras, D.A., Lonjaret, T., Fairfield, J.A., and Malliaras, G.G.: Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016).Google Scholar
15.Gkoupidenis, P., Rezaei-Mazinani, S., Proctor, C.M., Ismailova, E., and Malliaras, G.G.: Orientation selectivity with organic photodetectors and an organic electrochemical transistor. AIP Adv. 6, 111307 (2016).Google Scholar
16.Gkoupidenis, P., Koutsouras, D.A., and Malliaras, G.G.: Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017).Google Scholar
17.Turrigiano, G.G. and Nelson, S.B.: Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97107 (2004).Google Scholar
18.Abbott, L.F. and Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 11781183 (2000).Google Scholar
19.Gupta, N., Singh, S.S., and Stopfer, M.: Oscillatory integration windows in neurons. Nat. Commun. 7, 13808 (2016).Google Scholar
20.Miller, K.D. and MacKay, D.J.C.: The role of constraints in Hebbian learning. Neural Comput. 6, 100126 (1994).Google Scholar
21.Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., and Nelson, S.B.: Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892896 (1998).Google Scholar
22.Mitchell, S.J. and Silver, R.A.: Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433445 (2003).Google Scholar
23.Wan, C.J., Zhu, L.Q., Liu, Y.H., Feng, P., Liu, Z.P., Cao, H.L., Xiao, P., Shi, Y., and Wan, Q.: Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 28, 35573563 (2016).Google Scholar
24.Buzsáki, G. and Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 19261929 (2004).Google Scholar
25.Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).Google Scholar