Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T11:58:22.658Z Has data issue: false hasContentIssue false

Emerging soluble organic redox materials for next-generation grid energy-storage applications

Published online by Cambridge University Press:  28 May 2020

Xiaowen Zhan
Affiliation:
Battery Materials and Systems Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA99354, USA
Xiaochuan Lu*
Affiliation:
Department of Applied Engineering Technology, North Carolina A&T State University, Greensboro, NC27411, USA
David M. Reed
Affiliation:
Battery Materials and Systems Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA99354, USA
Vincent L. Sprenkle
Affiliation:
Battery Materials and Systems Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA99354, USA
Guosheng Li*
Affiliation:
Battery Materials and Systems Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA99354, USA
*
Address all correspondence to Xiaochuan Lu at xlu@ncat.edu and Guosheng Li at guosheng.li@pnnl.gov
Address all correspondence to Xiaochuan Lu at xlu@ncat.edu and Guosheng Li at guosheng.li@pnnl.gov
Get access

Abstract

Because of their structural versatility, fast redox reactivity, high storage capacity, sustainability, and environmental friendliness, soluble organic redox molecules have emerged as materials that have potential for use in energy-storage systems. Considering these advantages, this paper reviews recent progress in implementing such materials in aqueous soluble organic redox flow batteries and organic alkali metal/air batteries. We identify and discuss major challenges associated with molecular structures, cell configurations, and electrochemical parameters. Hopefully, we provide a general guidance for the future development of soluble organic redox materials for emerging energy-storage devices used in the electricity grid.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Annual Energy Outlook 2020: https://www.eia.gov/outlooks/aeo/ (2020).Google Scholar
2.Gyuk, I., Johnson, M., Vetrano, J., Lynn, K., Parks, W., Handa, R., Kannberg, L., Hearne, S., Waldrip, K., and Braccio, R.: Grid Energy Storage (US Department of Energy, 2013).Google Scholar
3.Shirpour, M., Zhan, X. and Doeff, M.: Sodium-ion batteries: “beyond lithium-ion”. 2015 TechConnect World Innovation Conference, Washington, D.C., 2015.Google Scholar
4.Gür, T.M.: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696 (2018).CrossRefGoogle Scholar
5.Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-González, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).CrossRefGoogle Scholar
6.Zhan, X., Sepulveda, J.P., Lu, X., Bonnett, J.F., Canfield, N.L., Lemmon, T., Jung, K., Reed, D.M., Sprenkle, V.L., and Li, G.: Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries. Energy Storage Mater. 24, 177 (2020).CrossRefGoogle Scholar
7.Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291 (2009).CrossRefGoogle Scholar
8.Dunn, B., Kamath, H., and Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).CrossRefGoogle ScholarPubMed
9.Xia, G.-T., Li, C., Wang, K., and Li, L.-W.: Structural design and electrochemical performance of PANI/CNTs and MnO2/CNTs supercapacitor. Sci. Adv. Mater. 11, 1079 (2019).CrossRefGoogle Scholar
10.Zhou, Y., Wang, Y., Wang, K., Kang, L., Peng, F., Wang, L., and Pang, J.: Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 260, 114169 (2020).CrossRefGoogle Scholar
11.Kai, W., Liwei, L., Wen, X., Shengzhe, Z., Yong, L., Hongwei, Z., and Zongqiang, S.: Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int. J. Electrochem. Sci. 12, 8306 (2017).CrossRefGoogle Scholar
12.Zhou, Y., Huang, Y., Pang, J., and Wang, K.: Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J. Power Sources 440, 227149 (2019).CrossRefGoogle Scholar
13.Akhil, A.A., Huff, G., Currier, A.B., Kaun, B.C., Rastler, D.M., Chen, S.B., Cotter, A.L., Bradshaw, D.T., and Gauntlett, W.D.: DOE/EPRI 2013 Electricity Storage Handbook in Collaboration With NRECA (Sandia National Laboratories, Albuquerque, NM, 2013).Google Scholar
14.Oshima, T., Kajita, M., and Okuno, A.: Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 1, 269 (2004).CrossRefGoogle Scholar
15.Lu, X., Kirby, B.W., Xu, W., Li, G., Kim, J.Y., Lemmon, J.P., Sprenkle, V.L., and Yang, Z.: Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299 (2013).CrossRefGoogle Scholar
16.Liu, X., Zhan, X., Hood, Z.D., and Chi, M.: Probing the origin of microcracks in layered oxide cathodes via electron microscopy. Microsc. Microanal. 25, 2058 (2019).CrossRefGoogle Scholar
17.Yan, P., Zheng, J., Liu, J., Wang, B., Cheng, X., Zhang, Y., Sun, X., Wang, C., and Zhang, J.-G.: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600 (2018).CrossRefGoogle Scholar
18.Li, W., Liu, X., Celio, H., Smith, P., Dolocan, A., Chi, M., and Manthiram, A.: Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv. Energy Mater. 8, 1703154 (2018).CrossRefGoogle Scholar
19.Zhan, X., Gao, S., and Cheng, Y.-T.: Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta 300, 36 (2019).CrossRefGoogle Scholar
20.Gao, S., Zhan, X., and Cheng, Y.-T.: Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J. Power Sources 410, 45 (2019).CrossRefGoogle Scholar
21.Zhou, W., Li, Y., Xin, S., and Goodenough, J.B.: Rechargeable sodium all-solid-state battery. ACS Central. Sci. 3, 52 (2017).CrossRefGoogle ScholarPubMed
22.Zhu, Y., Connell, J.G., Tepavcevic, S., Zapol, P., Garcia-Mendez, R., Taylor, N.J., Sakamoto, J., Ingram, B.J., Curtiss, L.A., Freeland, J.W., Fong, D.D., and Markovic, N.M.: Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energy Mater. 9, 1803440 (2019).CrossRefGoogle Scholar
23.Zhan, X., Lai, S., Gobet, M.P., Greenbaum, S.G., and Shirpour, M.: Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys. Chem. Chem. Phys. 20, 1447 (2018).CrossRefGoogle ScholarPubMed
24.Struzik, M., Garbayo, I., Pfenninger, R., and Rupp, J.L.M.: A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).CrossRefGoogle Scholar
25.Gong, Y.H., Fu, K., Xu, S.M., Dai, J.Q., Hamann, T.R., Zhang, L., Hitz, G.T., Fu, Z.Z., Ma, Z.H., McOwen, D.W., Han, X.G., Hu, L.B., and Wachsman, E.D.: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594 (2018).CrossRefGoogle Scholar
26.Sharafi, A., Kazyak, E., Davis, A.L., Yu, S., Thompson, T., Siegel, D.J., Dasgupta, N.P., and Sakamoto, J.: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961 (2017).CrossRefGoogle Scholar
27.Han, X., Gong, Y., Fu, K.K., He, X., Hitz, G.T., Dai, J., Pearse, A., Liu, B., Wang, H., Rubloff, G., Mo, Y., Thangadurai, V., Wachsman, E.D., and Hu, L.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2017).CrossRefGoogle ScholarPubMed
28.Fu, K.K., Gong, Y., Hitz, G.T., McOwen, D.W., Li, Y., Xu, S., Wen, Y., Zhang, L., Wang, C., and Pastel, G.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568 (2017).CrossRefGoogle Scholar
29.Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., and Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278 (2019).CrossRefGoogle ScholarPubMed
30.Sun, Y., Zhan, X., Hu, J., Wang, Y., Gao, S., Shen, Y., and Cheng, Y.-T.: Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl. Mater. Interfaces 11, 12467 (2019).CrossRefGoogle ScholarPubMed
31.Zhan, X., Cheng, Y.T., and Shirpour, M.: Nonstoichiometry and Li‐ion transport in lithium zirconate: the role of oxygen vacancies. J. Am. Ceram. Soc. 101, 4053 (2018).CrossRefGoogle Scholar
32.Zhang, L., Zhan, X., Cheng, Y.-T., and Shirpour, M.: Charge transport in electronic–ionic composites. J. Phys. Chem. Lett. 8, 5385 (2017).CrossRefGoogle ScholarPubMed
33.Zhan, X. and Shirpour, M.: Evolution of solid/aqueous interface in aqueous sodium-ion batteries. Chem. Commun. 53, 204 (2017).CrossRefGoogle Scholar
34.Song, Z. and Zhou, H.: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280 (2013).CrossRefGoogle Scholar
35.Yang, M., Liu, K., Shkrob, I.A., and Liao, C.: Redox-active polymers (redoxmers) for electrochemical energy storage. MRS Commun. 9, 1151 (2019).CrossRefGoogle Scholar
36.Xie, J. and Zhang, Q.: Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15, 1805061 (2019).CrossRefGoogle ScholarPubMed
37.Kim, K.C., Liu, T., Lee, S.W., and Jang, S.S.: First-principles density functional theory modeling of Li binding: thermodynamics and redox properties of quinone derivatives for lithium-ion batteries. J. Am. Chem. Soc. 138, 2374 (2016).CrossRefGoogle ScholarPubMed
38.Zhao, Q., Zhu, Z., and Chen, J.: Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 29, 1607007 (2017).CrossRefGoogle ScholarPubMed
39.Liang, Y., Tao, Z., and Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742 (2012).CrossRefGoogle Scholar
40.Oyaizu, K. and Nishide, H.: Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339 (2009).CrossRefGoogle Scholar
41.Muench, S., Wild, A., Friebe, C., Haupler, B., Janoschka, T., and Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116, 9438 (2016).CrossRefGoogle ScholarPubMed
42.Schon, T.B., McAllister, B.T., Li, P.F., and Seferos, D.S.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345 (2016).CrossRefGoogle ScholarPubMed
43.Liang, Y., and Yao, Y.: Positioning organic electrode materials in the battery landscape. Joule 2, 1690 (2018).CrossRefGoogle Scholar
44.Zhang, S., Ren, S., Han, D., Xiao, M., Wang, S., and Meng, Y.: Aqueous sodium alginate as binder: dramatically improving the performance of dilithium terephthalate-based organic lithium ion batteries. J. Power Sources 438, 227007 (2019).CrossRefGoogle Scholar
45.Liang, Y., Jing, Y., Gheytani, S., Lee, K.Y., Liu, P., Facchetti, A., and Yao, Y.: Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017).CrossRefGoogle ScholarPubMed
46.Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G.K., and Narayanan, S.R.: An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 161, A1371 (2014).CrossRefGoogle Scholar
47.Orita, A., Verde, M.G., Sakai, M., and Meng, Y.S.: A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 7, 13230 (2016).CrossRefGoogle ScholarPubMed
48.Huskinson, B., Marshak, M.P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru-Guzik, A., Gordon, R.G., and Aziz, M.J.: A metal-free organic-inorganic aqueous flow battery. Nature 505, 195 (2014).CrossRefGoogle ScholarPubMed
49.Lin, K.X., Chen, Q., Gerhardt, M.R., Tong, L.C., Kim, S.B., Eisenach, L., Valle, A.W., Hardee, D., Gordon, R.G., Aziz, M.J., and Marshak, M.P.: Alkaline quinone flow battery. Science 349, 1529 (2015).CrossRefGoogle ScholarPubMed
50.Janoschka, T., Martin, N., Hager, M.D., and Schubert, U.S.: An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angew. Chem. Int. Ed. Engl. 55, 14427 (2016).CrossRefGoogle ScholarPubMed
51.Lin, K., Gómez-Bombarelli, R., Beh, E.S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M.J., and Gordon, R.G.: A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1, 1 (2016).CrossRefGoogle Scholar
52.Liu, T., Wei, X., Nie, Z., Sprenkle, V., and Wang, W.: A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016).CrossRefGoogle Scholar
53.Winsberg, J., Stolze, C., Muench, S., Liedl, F., Hager, M.D., and Schubert, U.S.: TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett. 1, 976 (2016).CrossRefGoogle Scholar
54.Beh, E.S., De Porcellinis, D., Gracia, R.L., Xia, K.T., Gordon, R.G., and Aziz, M.J.: A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639 (2017).CrossRefGoogle Scholar
55.Gerhardt, M.R., Tong, L.C., Gomez-Bombarelli, R., Chen, Q., Marshak, M.P., Galvin, C.J., Aspuru-Guzik, A., Gordon, R.G., and Aziz, M.J.: Anthraquinone derivatives in aqueous flow batteries. Adv. Energy Mater. 7, 1601488 (2017).CrossRefGoogle Scholar
56.Lee, M., Hong, J., Lee, B., Ku, K., Lee, S., Park, C.B., and Kang, K.: Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 19, 2980 (2017).CrossRefGoogle Scholar
57.DeBruler, C., Hu, B., Moss, J., Luo, J., and Liu, T.L.: A sulfonate-functionalizefd viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 3, 663 (2018).CrossRefGoogle Scholar
58.Hollas, A., Wei, X., Murugesan, V., Nie, Z., Li, B., Reed, D., Liu, J., Sprenkle, V., and Wang, W.: A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508 (2018).CrossRefGoogle Scholar
59.Hu, B., Tang, Y.J., Luo, J., Grove, G., Guo, Y.S., and Liu, T.L.: Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chem. Commun. 54, 6871 (2018).CrossRefGoogle ScholarPubMed
60.Hu, B., Luo, J., Hu, M., Yuan, B., and Liu, T.L.: ApH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte. Angew. Chem. Int. Ed. Engl. 131, 16782 (2019).CrossRefGoogle Scholar
61.Ji, Y., Goulet, M.A., Pollack, D.A., Kwabi, D.G., Jin, S., Porcellinis, D., Kerr, E.F., Gordon, R.G., and Aziz, M.J.: A phosphonate‐functionalized quinone redox flow battery at near‐neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).CrossRefGoogle Scholar
62.Jin, S., Jing, Y., Kwabi, D.G., Ji, Y., Tong, L., De Porcellinis, D., Goulet, M.-A., Pollack, D.A., Gordon, R.G., and Aziz, M.J.: A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4, 1342 (2019).CrossRefGoogle Scholar
63.Mukhopadhyay, A., Zhao, H., Li, B., Hamel, J., Yang, Y., Cao, D., Natan, A., and Zhu, H.: Abundant organic dye as an anolyte for aqueous flow battery with multielectron transfer. ACS Appl. Energy Mater. 2, 7425 (2019).CrossRefGoogle Scholar
64.Kwabi, D.G., Lin, K., Ji, Y., Kerr, E.F., Goulet, M.-A., De Porcellinis, D., Tabor, D.P., Pollack, D.A., Aspuru-Guzik, A., and Gordon, R.G.: Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894 (2018).CrossRefGoogle Scholar
65.Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., and Schubert, U.S.: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78 (2015).CrossRefGoogle ScholarPubMed
66.Wei, X., Xu, W., Vijayakumar, M., Cosimbescu, L., Liu, T., Sprenkle, V., and Wang, W.: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649 (2014).CrossRefGoogle ScholarPubMed
67.Winsberg, J., Stolze, C., Schwenke, A., Muench, S., Hager, M.D., and Schubert, U.S.: Aqueous 2,2,6,6-Tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2, 411 (2017).CrossRefGoogle Scholar
68.Zhang, C., Niu, Z., Peng, S., Ding, Y., Zhang, L., Guo, X., Zhao, Y., and Yu, G.: Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries. Adv. Mater. 31, 1901052 (2019).CrossRefGoogle ScholarPubMed
69.Park, M., Beh, E.S., Fell, E.M., Jing, Y., Kerr, E.F., Porcellinis, D., Goulet, M.A., Ryu, J., Wong, A.A., Gordon, R.G., Cho, J., and Aziz, M.J.: A high voltage aqueous zinc–organic hybrid flow battery. Adv. Energy Mater. 9, 1900694 (2019).CrossRefGoogle Scholar
70.Li, X.F., Zhang, H.M., Mai, Z.S., Zhang, H.Z., and Vankelecom, I.: Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4, 1147 (2011).CrossRefGoogle Scholar
71.Sudworth, J.L. and Tilley, A.R.: The Sodium Sulfur Battery (Kluwer, New York, 1985).Google Scholar
72.Sudworth, J.L.: Sodium/nickel chloride (ZEBRA) battery. J. Power Sources 100, 149 (2001).CrossRefGoogle Scholar
73.Li, G.S., Lu, X.C., Kim, J.Y., Meinhardt, K.D., Chang, H.J., Canfield, N.L., and Sprenkle, V.L.: Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).CrossRefGoogle ScholarPubMed
74.Wang, Q., Zakeeruddin, S.M., Wang, D., Exnar, I., and Gratzel, M.: Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. Angew. Chem. Int. Ed. Engl. 45, 8197 (2006).CrossRefGoogle ScholarPubMed
75.Jia, C., Pan, F., Zhu, Y.G., Huang, Q., Lu, L., and Wang, Q.: High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Sci. Adv. 1, e1500886 (2015).CrossRefGoogle ScholarPubMed
76.Self, E.C., Delnick, F.M., Ruther, R.E., Allu, S., and Nanda, J.: High-capacity organic radical mediated phosphorus anode for sodium-based redox flow batteries. ACS Energy Lett. 4, 2593 (2019).CrossRefGoogle Scholar
77.Yu, J., Hu, Y.S., Pan, F., Zhang, Z., Wang, Q., Li, H., Huang, X., and Chen, L.: A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat. Commun. 8, 14629 (2017).CrossRefGoogle ScholarPubMed
78.Liang, F., Qiu, X., Zhang, Q., Kang, Y., Koo, A., Hayashi, K., Chen, K., Xue, D., Hui, K.N., Yadegari, H., and Sun, X.: A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy 49, 574 (2018).CrossRefGoogle Scholar
79.Cong, G., Wang, W., Lai, N.C., Liang, Z., and Lu, Y.C.: A high-rate and long-life organic-oxygen battery. Nat. Mater. 18, 390 (2019).CrossRefGoogle ScholarPubMed
80.Chang, H.-J., Lu, X., Bonnett, J.F., Canfield, N.L., Son, S., Park, Y.-C., Jung, K., Sprenkle, V.L., and Li, G.: “Ni-Less” cathodes for high energy density, intermediate temperature Na-NiCl2 batteries. Adv. Mater. Interfaces 5 (2018).CrossRefGoogle Scholar
81.Zhan, X., Bowden, M.E., Lu, X., Bonnett, J.F., Lemmon, T., Reed, D.M., Sprenkle, V.L., and Li, G.: A low-cost durable Na-FeCl2 battery with ultrahigh rate capability. Adv. Energy Mater. 10, 1903472 (2020).CrossRefGoogle Scholar
82.Doris, S.E., Ward, A.L., Baskin, A., Frischmann, P.D., Gavvalapalli, N., Chenard, E., Sevov, C.S., Prendergast, D., Moore, J.S., and Helms, B.A.: Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem. Int. Ed. 56, 1595 (2017).CrossRefGoogle ScholarPubMed
83.Hendriks, K.H., Robinson, S.G., Braten, M.N., Sevov, C.S., Helms, B.A., Sigman, M.S., Minteer, S.D., and Sanford, M.S.: High-performance oligomeric catholytes for effective macromolecular separation in nonaqueous redox flow batteries. ACS Central Sci. 4, 189 (2018).CrossRefGoogle ScholarPubMed