Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T10:24:14.793Z Has data issue: false hasContentIssue false

Electron energy response of NaI:Tl and SrI2:Eu calculated from carrier mobilities and measured first- and third-order quenching

Published online by Cambridge University Press:  16 November 2012

Joel Q. Grim*
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, 27109 North Carolina
Qi Li
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, 27109 North Carolina
K.B. Ucer
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, 27109 North Carolina
R.T. Williams
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, 27109 North Carolina
G.A. Bizarri
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, 94720 California
W.W. Moses
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, 94720 California
*
Address all correspondence to Joel Q. Grim atgrimjq@wfu.edu
Get access

Abstract

Intrinsic energy resolution in γ-radiation detectors is limited by nonlinear quenching that varies as the second or third power of local excitation density. Using a numerical model for local light yield depending on measured quenching rates, kinetic order, and carrier mobilities, we employ Monte Carlo simulations of energy deposited at each local excitation density to calculate electron energy response that can be directly compared with Compton coincidence and K-dip experiments. Agreement is found for NaI:Tl and SrI2:Eu using thermalized carrier diffusion and linear quenched fraction deduced from total light yield. This lays the groundwork for testing refinements with recent hot-electron extensions of the model.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hull, G., Choong, W.S., Moses, W.W., Bizarri, G., Valentine, J.D., Payne, S.A., Cherepy, N.J., and Reutter, B.W.: Measurements of NaI:Tl electron response: comparison of different samples. IEEE Trans. Nucl. Sci. 56, 331 (2009).CrossRefGoogle Scholar
2. Khodyuk, I.V., Rodnyi, P.A., and Dorenbos, P.: Nonproportional scintillation response of NaI:Tl to low energy x-ray photons and electrons. J. Appl. Phys. 107, 8 (2010).CrossRefGoogle Scholar
3. Bizarri, G., Moses, W.W., Singh, J., Vasil'ev, A.N., and Williams, R.T.: An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507 (2009).CrossRefGoogle Scholar
4. Grim, J.Q., Ucer, K.B., Williams, R.T., Burger, A., Bhattacharya, P., Tupitsyn, E., Bizarri, G.A., and Moses, W.W.: Measurement of exciton and free carrier nonlinear recombination dynamics in insulators and semiconductors. SORMA West, Oakland, May 16 (2012).Google Scholar
5. Grim, J.Q.: Experimental and computational studies of nonlinear quenching in materials used as radiation detectors. Ph.D. Dissertation, Wake Forest University, 2012.Google Scholar
6. Wang, Z., Xie, Y., Cannon, B.D., Campbell, L.W., Gao, F., and Kerisit, S.: Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903, (2011).Google Scholar
7. Li, Q., Grim, J.Q., Ucer, K.B., Burger, A., Bizarri, G.A., Moses, W.W., and Williams, R.T.: Host structure dependence of light yield on proportionality in scintillators in terms of hot and thermalized carrier transport. Phys. Status Solidi RRL 6, 346 (2012).CrossRefGoogle Scholar
8. Li, Q., Grim, J.Q., Williams, R.T., Bizarri, G.A., and Moses, W.W.: A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 109, 123716 (2011).CrossRefGoogle Scholar
9. Williams, R.T., Grim, J.Q., Li, Q., Ucer, K.B., and Moses, W.W.: Excitation density, diffusion-drift, and proportionality in scintillators. Phys. Status Solidi B 248, 426 (2011).CrossRefGoogle Scholar
10. Payne, S.A., Cherepy, N.J., Hull, G., Valentine, J.D., Moses, W.W., and Choong, W.-S.: Nonproportionality of scintillator detectors: theory and experiment. IEEE Trans. Nucl. Sci. 56, 2506 (2009).CrossRefGoogle Scholar
11. Payne, S.A., Moses, W.W., Sheets, S., Ahle, L., Cherepy, N.J., Sturm, B., and Dazeley, S.: Nonproportionality of scintillator detectors: theory and experiment. II. IEEE Trans. Nucl. Sci. 58, 3392 (2011).CrossRefGoogle Scholar
12. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G.A.P., Cooperman, G., Cosmo, G., Cuttone, G., Daquino, G.G., Donszelmann, M., Dressel, M., Folger, G., Foppiano, F., Generowicz, J., Grichine, V., Guatelli, S., Gumplinger, P., Heikkinen, A., Hrivnacova, I., Howard, A., Incerti, S., Ivanchenko, V., Johnson, T., Jones, F., Koi, T., Kokoulin, R., Kossov, M., Kurashige, H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F., Maire, M., Mantero, A., Mascialino, B., McLaren, I., Lorenzo, P.M., Minamimoto, K., Murakami, K., Nieminen, P., Pandola, L., Parlati, S., Peralta, L., Perl, J., Pfeiffer, A., Pia, M.G.A., Ribon, Rodrigues, P., Russo, G., Sadilov, S., Santin, G., Sasaki, T., Smith, D., Starkov, N., Tanaka, S., Tcherniaev, E., Tome, B., Trindade, A., Truscott, P., Urban, L., Verderi, M., Walkden, A., Wellisch, J.P., Williams, D.C., Wright, D., and Yoshida, H.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006).CrossRefGoogle Scholar
13. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J.J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., and Zschiesche, D.: Geant4: a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A, 506, 250 (2003).CrossRefGoogle Scholar
14. Dorenbos, P.: Fundamental limitations in the performance of Ce3+-Pr3+-, and Eu2+-activated scintillators. IEEE Trans. Nucl. Sci. 57, 1162 (2010).CrossRefGoogle Scholar
16. Martienssen, W.: On the exciton bands of alkali halide crystals. J. Phys. Chem. Solids 2, 257 (1957).Google Scholar
17. Kubota, S., Shirraishi, F., and Takami, Y.: Scintillation process in NaI(Tl): comparison with scintillation models. J. Phys. Soc. Jpn. 69, 3435 (2000).CrossRefGoogle Scholar
18. Aduev, B.P., Aluker, E.D., Belokurov, G.M., and Shvayko, V.N.: Radiation-stimulated conductivity of some alkali halides induced by 50 ps electron pulse irradiation. Phys. Status Solidi B 208, 137 (1998).3.0.CO;2-R>CrossRefGoogle Scholar
19. Dietrich, H.B. and Murray, R.B.: Kinetics of the diffusion of self-trapped holes in alkali halide scintillators. Journal of Luminescence 5, 155 (1972).CrossRefGoogle Scholar
20. Kerisit, S., Rosso, K.M., and Cannon, B.D.: Kinetic Monte Carlo model of scintillation mechanisms in CsI and CsI(Tl). IEEE Trans. Nucl. Sci. 55, 1251 (2008).CrossRefGoogle Scholar
21. Rodnyi, P.A.: Physical Processes in Inorganic Scintillators (CRC Press LLC, Boca Raton, FL, 1997), p. 79.Google Scholar
22. Pustovarov, V.A., Ogorodnikov, I.N., Goloshumova, A.A., Isaenko, L.I., and Yelisseyev, A.P.: A luminescence spectroscopy study of scintillation crystals SrI2 doped with Eu2+ . Optical Materials 34, 926 (2012).CrossRefGoogle Scholar
23. Alekhin, M.S., Khodyuk, I.V., de Haas, J.T.M., and Dorenbos, P.: Non-proportional response of SrI2:Eu2+ scintillators. Presented at 11th Intern. Conf. on Inorganic Scintillators and Their Applications, Giessen, Germany, 2011.Google Scholar
24. Sadigh, B. and Åberg, D.: First-principles calculations of self-trapping of carriers and excitons in NaI and SrI2. Presented at IEEE Symposium on Radiation Measurements and Applications (SORMA West) Oakland, May 14–17 (2012).Google Scholar
25. Kozorezov, A., Wigmore, J.K., and Owens, A.: Picosecond dynamics of hot carriers and phonons and scintillator non-proportionality. J. Appl. Phys. 112, 053709 (2012).CrossRefGoogle Scholar
26. Kirkin, R., Mikhailin, V.V., and Vasil'ev, A.N.: Recombination of correlated electron hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59, 2057 (2012). doi: 10.1109/TNS.2012.2194306 CrossRefGoogle Scholar
Supplementary material: File

Grim Supplementary Material

Appendix

Download Grim Supplementary Material(File)
File 155.1 KB