Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T23:52:17.289Z Has data issue: false hasContentIssue false

Electrochemical molecularly imprinted polymers in microelectrode devices

Published online by Cambridge University Press:  27 April 2020

Vitalys Mba Ekomo
Affiliation:
Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041Toulon Cedex 9, France
Catherine Branger
Affiliation:
Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041Toulon Cedex 9, France
Ana-Mihaela Gavrila
Affiliation:
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021Bucharest, Romania
Andrei Sarbu
Affiliation:
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021Bucharest, Romania
Dimitrios A. Koutsouras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541Gardanne, France
Clemens Stolz
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541Gardanne, France
George G. Malliaras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541Gardanne, France
Hugues Brisset*
Affiliation:
Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041Toulon Cedex 9, France
*
Address all correspondence to Hugues Brisset at brisset@univ-tln.fr
Get access

Abstract

This work demonstrated the possibility to integrate electrochemical molecularly imprinted polymers (e-MIPs) on microelectrodes to detect organic pollutants. e-MIPs are a cross-linked polymer with specific target binding cavities with a redox tracer inside. e-MIPs were obtained by precipitation copolymerization of ferrocenylmethyl methacrylate as a functional monomer and a redox tracer with ethylene glycol dimethacrylate as a cross-linker and bisphenol A as a target molecule. FTIR and elemental analysis confirmed the presence of ferrocene inside the polymers. Nitrogen adsorption/desorption experiments and binding isotherms demonstrated the presence of binding cavities inside the e-MIP. The electrochemical properties of the e-MIP were characterized in organic/aqueous media before their patterned on microelectrode.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haupt, K. and Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 24952504 (2000).CrossRefGoogle ScholarPubMed
Ye, L. and Haupt, K.: Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal. Bioanal. Chem. 378, 18871897 (2004).CrossRefGoogle ScholarPubMed
Uzun, L. and Turner, A.P.F.: Molecularly-imprinted polymer sensors: realising their potential. Biosens. Bioelectron. 76, 131144 (2016).CrossRefGoogle ScholarPubMed
Blanco-López, M.C., Lobo-Castañón, M.J., Miranda-Ordieres, A.J., and Tuñón-Blanco, P.: Electrochemical sensors based on molecularly imprinted polymers. TrAC Trends Anal. Chem. 23, 3648 (2004).CrossRefGoogle Scholar
Piletsky, S.A. and Turner, A.P.F.: Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14, 317323 (2002).3.0.CO;2-5>CrossRefGoogle Scholar
Canfarotta, F., Rapini, R., and Piletsky, S.: Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr. Opin. Electrochem. 7, 146152 (2018).CrossRefGoogle Scholar
Malitesta, C., Mazzotta, E., Picca, R.A., Poma, A., Chianella, I., and Piletsky, S.A.: MIP sensors – the electrochemical approach. Anal. Bioanal. Chem. 402, 18271846 (2012).CrossRefGoogle ScholarPubMed
Sharma, P.S., Pietrzyk-Le, A., D'Souza, F., and Kutner, W.: Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 402, 31773204 (2012).CrossRefGoogle ScholarPubMed
Sharma, P.S., Wojnarowicz, A., Sosnowska, M., Benincori, T., Noworyta, K., D'Souza, F., and Kutner, W.: Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens. Bioelectron 77, 565572 (2016).CrossRefGoogle ScholarPubMed
Branger, C., Brisset, H., and Udomsap, D.: University of Toulon. French Patent. FR 1000175817. 21/12/2012. PCT/IB2013/ 061196 - 20/12/2013, 2012. US Patent 20,150,344,607, 2015.Google Scholar
Udomsap, D., Branger, C., Culioli, G., Dollet, P., and Brisset, H.: A versatile electrochemical sensing receptor based on a molecularly imprinted polymer. Chem. Commun. 50, 74887491 (2014).CrossRefGoogle ScholarPubMed
Udomsap, D., Brisset, H., Culioli, G., Dollet, P., Laatikainen, K., Siren, H., and Branger, C.: Electrochemical molecularly imprinted polymers as material for pollutant detection. Mater. Today Commun. 17, 458465 (2018).CrossRefGoogle Scholar
Mba Ekomo, V., Branger, C., Bikanga, R., Florea, A.-M., Istamboulie, G., Calas-Blanchard, C., Noguer, T., Sarbu, A., and Brisset, H.: Detection of bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosens. Bioelectron. 112, 56161 (2018).Google Scholar
Mba Ekomo, V., Branger, C., Bikanga, R., Istamboulie, G., Calas-Blanchard, C., Noguer, T., and Brisset, H.: Screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers to detect pollutant. In 17th International Meeting on Chemical Sensors, 2018; pp. 219–220. doi:10.5162/IMCS2018/EC2.2.CrossRefGoogle Scholar
Mazzotta, E., Turco, A., Chianella, I., Guerreiro, A., Piletsky, S.A., and Malitesta, C.: Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens. Actuat. B Chem. 229, 174180 (2016).CrossRefGoogle Scholar
Rebocho, S., Cordas, C.M., Viveiros, R., and Casimiro, T.: Development of a ferrocenyl-based MIP in supercritical carbon dioxide: towards an electrochemical sensor for bisphenol A. J. Supercrit. Fluids 135, 98104 (2018).CrossRefGoogle Scholar
Corrales, J., Kristofco, L.A., Steele, W.B., Yates, B.S., Breed, C.S., Williams, E.S., and Brooks, B.W.: Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13, 129 (2015).CrossRefGoogle ScholarPubMed
Sharma, V.K., Anquandah, G.A.K., Yngard, R.A., Kim, H., Fekete, J., Bouzek, K., Ray, A.K., and Golovko, D.: Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J. Environ. Sci. Health A 44, 423442 (2009).CrossRefGoogle ScholarPubMed
Zhang, C., Li, Y., Wang, C., Niu, L., and Cai, W.: Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review. Crit. Rev. Environ. Sci. Technol. 46, 159 (2016).CrossRefGoogle Scholar
Muhamad, M.S., Salim, M.R., Lau, W.J., Yusop, Z., and Hadibarata, T.: The removal of bisphenol A in water treatment plant using ultrafiltration membrane system. Water Air. Soil Pollut. 227, 250 (2016).CrossRefGoogle Scholar
Fan, Z., Hu, J., An, W., and Yang, M.: Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: comparison to the parent compounds. Environ. Sci. Technol. 47, 1084110850 (2013).CrossRefGoogle ScholarPubMed
Padhye, L., Yao, H., Kung'u, F.T., and Huang, C.-H.: Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 51, 266276 (2013).CrossRefGoogle Scholar
Koide, S. and Yokoyama, K.: Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J. Electroanal. Chem. 468, 193201 (1999).CrossRefGoogle Scholar
Wang, J., Cormack, P.A.G., Sherrington, D.C., and Khoshdel, E.: Monodisperse molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Ed. 42, 53365338 (2003).CrossRefGoogle ScholarPubMed
Socrates, G.: Infrared and Raman Characteristic Group Frequencies – Tables and Charts. 3rd ed. (J. Wiley & Sons, New York, 2001).Google Scholar
Okay, O.: Macroporous copolymer networks. Prog. Polym. Sci. 25, 711779 (2000).CrossRefGoogle Scholar
Meouche, W., Laatikainen, K., Margaillan, A., Silvonen, T., Siren, H., Sainio, T., Beurroies, I., Denoyel, R., and Branger, C.: Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. Eur. Polym. J. 87, 124135 (2017).CrossRefGoogle Scholar
Supplementary material: File

Ekomo et al. Supplementary Materials

Ekomo et al. Supplementary Materials

Download Ekomo et al. Supplementary Materials(File)
File 1.5 MB