Published online by Cambridge University Press: 26 February 2019
We developed a microelectromechanical-system optical interferometer based on an elastomer nanosheet using a polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer for a suspended membrane as a way to improve the stress sensitivity for surface stress detection. The elastomeric SBS nanosheet provides a low Young's modulus of 28 ± 11 MPa, a large elastic strain of 24 ± 12%, and high adhesiveness, of which the surface charge and mechanical property are tunable by layer-by-layer (LbL) deposition of polysaccharides. A freestanding SBS nanosheet can be formed above a microcavity using a dry transfer technique without applying vacuum or high-temperature processes. The maximum deflection associated with molecular adsorption increased by sevenfold compared with a parylene-C-based optical interferometric transducer.
This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.