Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T22:47:25.806Z Has data issue: false hasContentIssue false

The effects of hydrostatic pressure on the martensitic transition, magnetic, and magnetocaloric effects of Ni45Mn43CoSn11

Published online by Cambridge University Press:  11 October 2017

Sudip Pandey*
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Ahmad Us Saleheen
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Abdiel Quetz
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Jing-Han Chen
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Anil Aryal
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Igor Dubenko
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Philip W. Adams
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Shane Stadler
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Naushad Ali
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
*
Address all correspondence to Sudip Pandey at sudip@siu.edu
Get access

Abstract

The magnetic and magnetocaloric properties of Ni45Mn43CoSn11 have been investigated using heat capacity measurements and magnetization with hydrostatic pressure applications. A shift in the martensitic transition temperature by 40 K to higher temperatures was observed with application of pressure P = 1.06 GPa. The magnetic entropy changes significantly increases from 24 to 42 J/kgK at pressure of 0.73 GPa. A large adiabatic temperature change of 4 K was found from specific heat measurements. Also, the density of states and Debye temperature has been estimated from heat capacity measurements. The mixed effects of pressure and magnetic field on the transition temperature are discussed.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gschneidner, K.A. Jr., Pecharsky, V.K., and Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005).Google Scholar
2. Pecharsky, A.O., Gschneidner, K.A. Jr., and Pecharsky, V.K.: The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 . J. Appl. Phys. 93, 4722 (2003).Google Scholar
3. Tegus, O., Bruck, E., Buschow, K.H.J., and de Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature (Lond.) 415, 150 (2002).CrossRefGoogle ScholarPubMed
4. Khan, M., Dubenko, I., Stadler, S., and Ali, N.: Exchange bias in bulk Mn rich Ni–Mn–Sn Heusler alloys. J. Appl. Phys. 102, 113914 (2007).Google Scholar
5. Dubenko, I., Samanta, T., Quetz, A., Saleheen, A., Prudnikov, V.N., Granovsky, A.B., Stadler, S., and Ali, N.: Asymmetric magnetoresistance in bulk In-based off-stoichiometric Heusler alloys. Phys. Status Solidi C 11, 10001003 (2014).CrossRefGoogle Scholar
6. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Suard, E., and Ouladdiaf, B.: Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B 75, 104414 (2007).Google Scholar
7. Arumugam, S., Ghosh, S., Ghosh, A., Devarajan, U., Kannan, M., Govindaraj, L., and Mandal, K.: Effect of hydrostatic pressure on the magnetic, exchange bias and magnetocaloric properties of Ni45.5Co2Mn37.5Sn15 . J. Alloys Comp. 712, 714719 (2017).Google Scholar
8. Sharma, V.K., Chattopadhyay, M.K., and Roy, S.B.: The effect of external pressure on the magnetocaloric effect of Ni–Mn–In alloy. J. Phys. Condens Matter. 23, 366001 (2011).Google Scholar
9. Pandey, S., Quetz, A., Aryal, A., Samanta, T., Dubenko, I., Mazumdar, D., Stadler, S., and Ali, N.: The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys. AIP Advances 6, 056213 (2016).Google Scholar
10. Samanta, T., Lepkowski, D.L., Us Saleheen, A., Shankar, A., Prestigiacomo, J., Dubenko, I., Quetz, A., Oswald, I.W.H., McCandless, G.T., Chan, J.Y., Adams, P.W., Young, D.P., Ali, N., and Stadler, S.: Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems. Phys. Rev. B 91, 020401(R) (2015).CrossRefGoogle Scholar
11. Samanta, T., Lepkowski, D.L., Us Saleheen, A., Shankar, A., Prestigiacomo, J., Dubenko, I., Quetz, A., Oswald, I.W.H., McCandless, G.T., Chan, J.Y., Adams, P.W., Young, D.P., Ali, N., and Stadler, S.: Effects of hydrostatic pressure on magnetostructural transitions and magnetocaloric properties in (MnNiSi)1−x(FeCoGe)x . J. Appl. Phys. 117, 123911 (2015).CrossRefGoogle Scholar
12. Manosa, L., Moya, X., and Planes, A.: Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys. Appl. Phys. Lett. 92, 012515 (2008).Google Scholar
13. Eiling, A. and Schilling, J.S.: Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300 K and 0–10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn, and In. J. Phys. F: Metal Phys. 11, 623 (1981).Google Scholar
14. Nayak, A.K., Suresh, K.G., Nigam, A.K., Coelho, A.A., and Gama, S.: Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy. J. Appl. Phys. 106, 053901 (2009).CrossRefGoogle Scholar
15. Pandey, S., Aryal, A., Quetz, A., Samanta, T., Dubenko, I., Stadler, S., and Ali, N.: Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys. J. Appl. Phys. 117, 183905 (2015).Google Scholar
16. Gottschall, T., Skokov, K.P., Benke, D., Gruner, M.E., and Gutfleisch, O.: Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials. Phys. Rev. B 93, 184431 (2016).Google Scholar
17. Tishin, A.M. and Spichkin, Y.I.: The Magnetocaloric Effects and its Applications (IOP Publishing Ltd, Bristol, 2003).Google Scholar
18. Albertini, F., Kamarad, J., Arnold, Z., Pareti, L., Villa, E., and Right, L.: Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys. J. Magn. Magn. Mater. 316, 364 (2007).CrossRefGoogle Scholar
19. Muthu, S.E., Kanagaraj, M., Singh, S., Sastry, P.U., Ravikumar, G., Rao, N.V.R., Raja, M.M., and Arumugam, S.: Hydrostatic pressure effects on martensitic transition, magnetic and magnetocaloric effect in Si doped Ni–Mn–Sn Heusler alloys. J. Alloys Comp. 584, 175179 (2014).CrossRefGoogle Scholar
20. Zhang, X., Zhang, B., Yu, S., Liu, Z., Xu, W., Liu, G., Chen, J., Cao, Z., and Wu, G.: Combined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling. Phys. Rev. B 76, 132403 (2007).Google Scholar
21. Khovailo, V.V., Oikawa, K., Abe, T., and Takagi, T.: Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2+xMn1−xGa. J. Appl. Phys. 93, 8483 (2003).CrossRefGoogle Scholar
22. Mizutani, U.: Introduction to the Electron Theory of Metals (Cambridge University Press, Cambridge, 2001).Google Scholar
23. Chernenko, V., Fujita, A., Besseghini, S., and Perez-Landazabal, J.: Low-temperature specific heat of Ni–Mn–Ga ferromagnetic shape memory alloys. J. Magn. Magn. Mater. 320, e156e159 (2008).Google Scholar
24. Pathak, A.K., Dubenko, I., Xiong, Y., Adams, P.W., Stadler, S., and Ali, N.: Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15Heusler Alloy. J. Appl. Phys. 109, 07A916 (2011).Google Scholar
25. Chen, J.H., Bruno, N.M., Karaman, I., Huang, Y., Li, J., and Ross, J.H.: Calorimetric and magnetic study for Ni50Mn36In14 and relative cooling power in paramagnetic inverse magnetocaloric systems. J. Appl. Phys. 116, 203901 (2014).CrossRefGoogle Scholar
26. Pandey, S., Quetz, A., Aryal, A., Dubenko, I., Blinov, M., Rodionov, I., Prudniko, V., Mazumdar, D., Granovsky, A., Stadler, S., and Ali, N.: Giant field-induced adiabatic temperature changes in In-based off-stoichiometric Heusler alloys. J. Appl. Phys. 121, 133901 (2017).Google Scholar