Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T11:46:00.578Z Has data issue: false hasContentIssue false

Effect of the ligand in the crystal structure of zinc oxide: an x-ray powder diffraction, x-ray absorption near-edge structure, and an extended x-ray absorption fine structure study

Published online by Cambridge University Press:  20 April 2016

María de los A. Cepeda-Pérez
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
Cristina M. Reyes-Marte
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
Valerie Ann Carrasquillo
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
William A. Muñiz
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
Edgar J. Trujillo
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
Rahul Singhal
Affiliation:
Department of Physics and Engineering Physics, Central Connecticut State University, New Britain, CT-06050
Harry Rivera
Affiliation:
Inter American University of Puerto Rico, Bayamón Campus, Carr 500 Dr John W. Harris, Bayamón 00957, Puerto Rico
Mitk'El B. Santiago-Berríos*
Affiliation:
Universidad Metropolitana, School of Science and Technology, Nanomaterial Science Laboratory, P.O. Box 21150, San Juan 00928-1150, Puerto Rico
*
Address all correspondence to Mitk'El B. Santiago-Berríos at msantiago326@suagm.edu
Get access

Abstract

We analyze the effect of functionalization in the surface of zinc oxide crystal structure by 3-mercaptopropionic acid. X-ray powder diffraction data and extended x-ray absorption fine structure studies confirms a wurtzite structure. However, the morphology of the surface seems to be reduced and shows a film-like surface as demonstrated by x-ray absorption near edge structure and scanning electron microscopy. As a result of surface functionalization, the energy levels of the semiconductor were shifted toward reductive potentials (by 50 mV) as determined by diffuse reflectance and cyclic voltammetry.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., and Bulović, V.: Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863 (2014).CrossRefGoogle ScholarPubMed
2. Wise, F.W.: Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33, 773 (2000).CrossRefGoogle ScholarPubMed
3. Jiang, X., Schaller, R.D., Lee, S.B., Pietryga, J.M., Klimov, V.I., and Zakhidov, A.A.: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J. Mater. Res. 22, 2204 (2007).CrossRefGoogle Scholar
4. Choi, J.J., Lim, Y.-F., Santiago-Berrios, M.E.B., Oh, M., Hyun, B.-R., Sun, L., Bartnik, A.C., Goedhart, A., Malliaras, G.G., Abruña, H.D., Wise, F.W., and Hanrath, T.: PbSe nanocrystal excitonic solar cells. Nano Lett. 9, 3749 (2009).Google Scholar
5. Fulati, A., Usman Ali, S., Riaz, M., Amin, G., Nur, O., and Willander, M.: Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9, 8911 (2009).CrossRefGoogle ScholarPubMed
6. Hau, S.K., Yip, H.-L., Baek, N.S., Zou, J., O'Malley, K., and Jen, A.K.-Y.: Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).Google Scholar
7. Niepelt, R., Schröder, U.C., Sommerfeld, J., Slowik, I., Rudolph, B., Möller, R., Seise, B., Csaki, A., Fritzsche, W., and Ronning, C.: Biofunctionalization of zinc oxide nanowires for DNA sensory applications. Nanoscale Res. Lett. 6, 511 (2011).CrossRefGoogle ScholarPubMed
8. Zhang, B., Kong, T., Xu, W., Su, R., Gao, Y., and Cheng, G.: Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers. Langmuir 26, 4514 (2010).Google Scholar
9. Voznyy, O., Zhitomirsky, D., Stadler, P., Ning, Z., Hoogland, S., and Sargent, E.H.: A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448 (2012).Google Scholar
10. Öztürk, S., Tasaltin, N., Kilinç, n, and Öztürk, Z.Z.: Fabrication of ZnO nanotubes using AAO template and sol–gel method. J. Optoelectron. Biomed. Mater. 1, 15 (2009).Google Scholar
11. Dong, F., Licheng, L., Weilin, X., Guangzhong, L., Zhiping, L., Yingsan, Z., Jie, X., and Chuanxi, X.: Hollow SnO2–ZnO hybrid nanofibers as anode materials for lithium-ion battery. Mater. Res. Express 1, 025012 (2014).Google Scholar
12. Pang, A., Chen, C., Chen, L., Liu, W., and Wei, M.: Flexible dye-sensitized ZnO quantum dots solar cells. RSC Adv. 2, 9565 (2012).Google Scholar
13. Petrella, A., Cosma, P., Lucia Curri, M., Rochira, S., and Agostiano, A.: Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study. J Nanopart Res 13, 6467 (2011).Google Scholar
14. Lokesh, R.N., Balakrishnan, L., Jeganathan, K., Layek, S., Verma, H.C., and Gopalakrishnan, N.: Role of surface functionalization in ZnO:Fe nanostructures. Mater. Sci. Eng. B 183, 39 (2014).Google Scholar
15. Roberts, D.R., Ford, R.G., and Sparks, D.L.: Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid Interface Sci. 263, 364 (2003).Google Scholar
16. Jeong, E.-S., Yu, H.-J., Han, S.-W., An, S.J., Yoo, J., Kim, Y.-J., and Yi, G.-C.: Local structural properties of ZnO nanoparticles, nanorods, and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).Google Scholar
17. Jeong, E.-S., Yu, H.-J., Kim, Y.-J., Yi, G.-C., Choi, Y.-D., and Han, S.-W.: Local structural and optical properties of ZnO nanoparticles. J. Nanosci. Nanotechnol. 10, 3562 (2010).CrossRefGoogle ScholarPubMed
18. ES, J., HJ, Y., Han, S., An, S., Yoo, J., Kim, Y., and Yi, G.: Local structural properties of ZnO nanoparticles, nanorods and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).Google Scholar
19. Ravel, B., and Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).Google Scholar
20. Aneesh, P.M., Vanaja, K.A., and Jayaraj, M.K.: Synthesis of ZnO nanoparticles by hydrothermal method. Proc. SPIE, Nanophotonic Materials IV, 6639, 66390J (2007).CrossRefGoogle Scholar
21. Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford/New York, 1966).Google Scholar
22. Zhang, X.G.: Electrochemistry of Zinc Oxide, in Corrosion and Electrochemistry of Zinc, (Springer, Boston, 1996), p. 93.Google Scholar
23. Liu, Y., Liu, M.S., and Jen, A.K.-Y.: Synthesis and characterization of a novel and highly efficient light-emitting polymer. Acta Polym. 50, 105 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
24. de la Cueva, L., Lauwaet, K., Otero, R., Gallego, J.M., Alonso, C., and Juarez, B.H.: Effect of chloride ligands on CdSe nanocrystals by cyclic voltammetry and x-ray photoelectron spectroscopy. J. Phys. Chem. C 118, 4998 (2014).Google Scholar
25. Liu, D., Wu, W., Qiu, Y., Yang, S., Xiao, S., Wang, Q.-Q., Ding, L., and Wang, J.: Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24, 5052 (2008).Google Scholar
Supplementary material: File

Cepeda-Pérez supplementary material

Figure S1

Download Cepeda-Pérez supplementary material(File)
File 71.2 KB