Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T22:20:25.875Z Has data issue: false hasContentIssue false

Densification of thoria through flash sintering

Published online by Cambridge University Press:  11 September 2017

W. Straka*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
S. Amoah
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA Department of Physics, Lenoir Rhyne University, Hickory, NC 28601, USA
J. Schwartz
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
*
Address all correspondence to W. Straka at wjstraka@ncsu.edu
Get access

Abstract

Thorium dioxide (thoria, ThO2) is used in refractory applications and as nuclear fuel. Its melting temperature, the highest of any binary oxide, makes it a difficult system to process. Here we report on the effects of flash sintering on the densification of thoria. We found 95% of theoretical density is obtained at ~950 °C (~30% of the melting temperature) with an electric field of 800 V/cm. Variation in power density had a minimal effect on the densification. Scanning electron microscopy images show the effects of flash sintering on grain size as a function of electric field.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ronchi, C. and Hiernaut, J.P.: Experimental measurement of pre-melting and melting of thorium dioxide. J. Alloys Compd. 240, 179185 (1996).Google Scholar
2.Peterson, S., Adams, R.E., and Douglas, D.A.: Properties of thorium, its alloys, and its compounds. In Utilization of Thorium in Power Reactors, International Atomic Energy Agency (IAEA) Technical reports series No. 52 (IAEA, Vienna, Austria, 1966), pp. 292312.Google Scholar
3.Amgaonkar, L.B., Rathod, M.V., Pardey, A.P., and Khandait, S.P.: Thorium as a nuclear fuel. Int. J. Eng. Appl. Technol. AGNIPANKH-15, 48 (2015).Google Scholar
4.Pope, J.M. and Radford, K.C.: Physical properties of some thoria powders and their influence on sinterability. J. Nucl. Mater. 52, 241254 (1974).Google Scholar
5.Baena, A., Cardinaels, T., Vleugels, J., Binnemans, K., and Verwerft, M.: Activated sintering of ThO2 with Al2O3 under reducing and oxidizing conditions. J. Nucl. Mater. 470, 3443 (2016).Google Scholar
6.Ananthasivan, K., Balakrishnan, S., Anthonysamy, S., Divakar, R., Mohandas, E., and Ganesan, V.: Synthesis and sintering of nanocrystalline thoria doped with CaO and MgO derived through oxalate-deagglomeration. J. Nucl. Mater. 434, 223229 (2013).Google Scholar
7.Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., Divakar, R., and Sundararaman, D.: PVA aided microwave synthesis: a novel route for the production of nanocrystalline thoria powder. J. Nucl. Mater. 231, 213220 (1996).Google Scholar
8.Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R., and Ramakrishnan, P.: Thorium-oxide—calcination, compaction and sintering. J. Nucl. Mater. 160, 8894 (1988).Google Scholar
9.Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R., and Ramakrishnan, P.: Low-temperature sintering of thoria. J. Mater. Sci. Lett. 7, 657660 (1988).Google Scholar
10.Ananthasivan, K., Anthonysamy, S., Sudha, C., Terrance, A.L.E., and Rao, P.R.V.: Thoria doped with cations of group VB-synthesis and sintering. J. Nucl. Mater. 300, 217229 (2002).Google Scholar
11.Muta, H., Murakami, Y., Uno, M., Kurosaki, K., and Yamanaka, S.: Thermophysical properties of Th1-xUxO2 pellets prepared by spark plasma sintering technique. J. Nucl. Sci. Technol. 50, 181187 (2013).Google Scholar
12.Tyrpekl, V., Cologna, M., Robba, D., and Somers, J.: Sintering behaviour of nanocrystalline ThO2 powder using spark plasma sintering. J. Eur. Ceram. Soc. 36, 767772 (2016).Google Scholar
13.Raftery, A.M., Pereira da Silva, J.G., Byler, D.D., Andersson, D.A., Uberuaga, B.P., Stanek, C.R., and McClellan, K.J.: Onset conditions for flash sintering of UO2. J. Nucl. Mater. 493, 264270 (2017).Google Scholar
14.Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in < 5 s at 850 °C. J. Am. Ceram. Soc. 93, 35563559 (2010).Google Scholar
15.Francis, J.S.C., Cologna, M., and Raj, R.: Particle size effects in flash sintering. J. Eur. Ceram. Soc. 32, 31293136 (2012).Google Scholar
16.Cologna, M., Francis, J.S.C., and Raj, R.: Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 31, 28272837 (2011).Google Scholar
17.Kim, S., Kang, S.L., and Chen, I.: Electro-sintering of yttria-stabilized cubic zirconia. J. Am. Ceram. Soc. 96, 13981406 (2013).Google Scholar
18.Rheinheimer, W., Fülling, M., and Hoffmann, M.J.: Grain growth in weak electric fields in strontium titanate: grain growth acceleration by defect redistribution. J. Eur. Ceram. Soc. 36, 27732780 (2016).Google Scholar
19.Qin, W., Majidi, H., Yun, J., and van Benthem, K.: Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia. J. Am. Ceram. Soc. 99, 22532259 (2016).Google Scholar
20.Pereira da Silva, J.G., Al-Qureshi, H.A., Keil, F., and Janssen, R.: A dynamic bifurcation criterion for thermal runaway during the flash sintering of ceramics. J. Eur. Ceram. Soc. 36, 12611267 (2016).Google Scholar
21.Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., and Wilshaw, P.R.: Electrical characteristics of flash sintering: thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 18651877 (2015).Google Scholar
22.Dong, Y. and Chen, I.: Predicting the onset of flash sintering. J. Am. Ceram. Soc. 98, 23332335 (2015).Google Scholar
23.Dong, Y. and Chen, I.W.: Onset criterion for flash sintering. J. Am. Ceram. Soc. 98, 36243627 (2015).Google Scholar
24.Jha, S.K., Lebrun, J.M., and Raj, R.: Phase transformation in the alumina–titania system during flash sintering experiments. J. Eur. Ceram. Soc. 36, 733739 (2016).Google Scholar
25.Downs, J.A. and Sglavo, V.M.: Electric field assisted sintering of cubic zirconia at 390 degrees C. J. Am. Ceram. Soc. 96, 13421344 (2013).Google Scholar
26.Prette, A.L.G., Cologna, M., Sglavo, V., and Raj, R.: Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J. Power Sources 196, 20612065 (2011).Google Scholar
27.Wyckoff, R.W.G.: Crystal Structures (John Wiley, New York, 1963).Google Scholar
28.Maiti, H.S. and Subbarao, E.C.: Electrical-conduction in CaO-doped thoria electrolytes. J. Electrochem. Soc. 123, 17131718 (1976).Google Scholar
29.Danforth, W.E. and Morgan, F.H.: Electrical resistance of thoria. Phys. Rev. 79, 142144 (1950).Google Scholar
30.Iqbal, M. and Baker, E.H.: Conductivity measurements on thoria and thoria—yttria solid solutions at high oxygen pressures. High Temp. Press. 5, 265271 (1973).Google Scholar
31.Hammou, A. and Deportes, C.: Electrical conductivity and defects structure in thorium-dioxide at high-temperature: study of ionic and electronic conductivities. J. Chime Phys. Phys.-Chim. Biol. 71, 10711080 (1974).Google Scholar
32.Aizenshtein, M., Shvareva, T.Y., and Navrotsky, A.: Thermochemistry of lanthana- and yttria-doped thoria. J. Am. Ceram. Soc. 93, 41424147 (2010).Google Scholar
33.Chen, P-L. and Chen, I-W.: Role of defect interaction in boundary mobility and cation diffusivity of CeO2. J. Am. Ceram. Soc. 77, 22892297 (1994).Google Scholar
34.Chen, P-L. and Chen, I-W.: Grain boundary mobility in Y2O3: defect mechanism and dopant effects. J. Am. Ceram. Soc. 79, 18011809 (1996).Google Scholar
35.Chen, P-L. and Chen, I-W.: Grain growth in CeO2: dopant effects, defect mechanism, and solute drag. J. Am. Ceram. Soc. 79, 17931800 (1996).Google Scholar
36.Dong, Y., Wang, H., and Chen, I.W.: Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria. I. Grain growth study. J. Am. Ceram. Soc. 100, 876886 (2017).Google Scholar
37.Biesuz, M. and Sglavo, V.M.: Flash sintering of alumina: effect of different operating conditions on densification. J. Eur. Ceram. Soc. 36, 25352542 (2016).Google Scholar
Supplementary material: File

Straka et al supplementary material

Straka et al supplementary material 1

Download Straka et al supplementary material(File)
File 2 MB