Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Abreha, Biruk G.
Agarwal, Snigdha
Foster, Ian
Blaiszik, Ben
and
Lopez, Steven A.
2019.
Virtual Excited State Reference for the Discovery of Electronic Materials Database: An Open-Access Resource for Ground and Excited State Properties of Organic Molecules.
The Journal of Physical Chemistry Letters,
Vol. 10,
Issue. 21,
p.
6835.
Thurston, Bryce A.
Shapera, Ethan P.
Tovar, John D.
Schleife, André
and
Ferguson, Andrew L.
2019.
Revealing the Sequence-Structure–Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling.
Langmuir,
Vol. 35,
Issue. 47,
p.
15221.
Nisbet, Matthew L.
Pendleton, Ian M.
Nolis, Gene M.
Griffith, Kent J.
Schrier, Joshua
Cabana, Jordi
Norquist, Alexander J.
and
Poeppelmeier, Kenneth R.
2020.
Machine-Learning-Assisted Synthesis of Polar Racemates.
Journal of the American Chemical Society,
Vol. 142,
Issue. 16,
p.
7555.
Huerta, E. A.
Khan, Asad
Davis, Edward
Bushell, Colleen
Gropp, William D.
Katz, Daniel S.
Kindratenko, Volodymyr
Koric, Seid
Kramer, William T. C.
McGinty, Brendan
McHenry, Kenton
and
Saxton, Aaron
2020.
Convergence of artificial intelligence and high performance computing on NSF-supported cyberinfrastructure.
Journal of Big Data,
Vol. 7,
Issue. 1,
Melton, Cody A.
and
Mitas, Lubos
2020.
Many-body electronic structure of
LaScO3
by real-space quantum Monte Carlo.
Physical Review B,
Vol. 102,
Issue. 4,
Boyd, James D.
and
Grady, Martha E.
2020.
The effect of surface roughness on laser-induced stress wave propagation.
Applied Physics Letters,
Vol. 117,
Issue. 12,
Pendleton, Ian M.
Caucci, Mary K.
Tynes, Michael
Dharna, Aaron
Nellikkal, Mansoor Ani Najeeb
Li, Zhi
Chan, Emory M.
Norquist, Alexander J.
and
Schrier, Joshua
2020.
Can Machines “Learn” Halide Perovskite Crystal Formation without Accurate Physicochemical Features?.
The Journal of Physical Chemistry C,
Vol. 124,
Issue. 25,
p.
13982.
Shmilovich, Kirill
Mansbach, Rachael A.
Sidky, Hythem
Dunne, Olivia E.
Panda, Sayak Subhra
Tovar, John D.
and
Ferguson, Andrew L.
2020.
Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation.
The Journal of Physical Chemistry B,
Vol. 124,
Issue. 19,
p.
3873.
Ting, Jeffrey M.
Marras, Alexander E.
Mitchell, Joseph D.
Campagna, Trinity R.
and
Tirrell, Matthew V.
2020.
Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles.
Molecules,
Vol. 25,
Issue. 11,
p.
2553.
Khan, Asad
Huerta, E.A.
and
Das, Arnav
2020.
Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers.
Physics Letters B,
Vol. 808,
Issue. ,
p.
135628.
Brinson, L. Catherine
Deagen, Michael
Chen, Wei
McCusker, James
McGuinness, Deborah L.
Schadler, Linda S.
Palmeri, Marc
Ghumman, Umar
Lin, Anqi
and
Hu, Bingyin
2020.
Polymer Nanocomposite Data: Curation, Frameworks, Access, and Potential for Discovery and Design.
ACS Macro Letters,
Vol. 9,
Issue. 8,
p.
1086.
Wang, Guangming
Annaberdiyev, Abdulgani
and
Mitas, Lubos
2020.
Binding and excitations in SixHy molecular systems using quantum Monte Carlo.
The Journal of Chemical Physics,
Vol. 153,
Issue. 14,
Rodrigues, J. N. B.
and
Wagner, Lucas K.
2020.
Identifying materials with charge–spin physics using charge–spin susceptibility computed from first principles.
The Journal of Chemical Physics,
Vol. 153,
Issue. 7,
Lopez Garcia, Alvaro
De Lucas, Jesus Marco
Antonacci, Marica
Zu Castell, Wolfgang
David, Mario
Hardt, Marcus
Lloret Iglesias, Lara
Molto, Germen
Plociennik, Marcin
Tran, Viet
Alic, Andy S.
Caballer, Miguel
Plasencia, Isabel Campos
Costantini, Alessandro
Dlugolinsky, Stefan
Duma, Doina Cristina
Donvito, Giacinto
Gomes, Jorge
Heredia Cacha, Ignacio
Ito, Keiichi
Kozlov, Valentin Y.
Nguyen, Giang
Orviz Fernandez, Pablo
Sustr, Zdenek
and
Wolniewicz, Pawel
2020.
A Cloud-Based Framework for Machine Learning Workloads and Applications.
IEEE Access,
Vol. 8,
Issue. ,
p.
18681.
Schiller, Joshua A.
Toro, Ricardo
Shah, Aagam
Surana, Mitisha
Zhang, Kaihao
Robertson, Matthew
Miller, Kristina
Cruse, Kevin
Liu, Kevin
Seong, Bomsaerah
Seol, Chae
Foster, Ian T.
Blaiszik, Ben J.
Galewsky, Ben
Adams, Darren
Katz, Daniel S.
Ferreira, Placid
Ertekin, Elif
and
Tawfick, Sameh
2020.
Crowd-Sourced Data and Analysis Tools for Advancing the Chemical Vapor Deposition of Graphene: Implications for Manufacturing.
ACS Applied Nano Materials,
Vol. 3,
Issue. 10,
p.
10144.
Benali, Anouar
Shin, Hyeondeok
and
Heinonen, Olle
2020.
Quantum Monte Carlo benchmarking of large noncovalent complexes in the L7 benchmark set.
The Journal of Chemical Physics,
Vol. 153,
Issue. 19,
Iacocca, Ezio
Gliga, Sebastian
and
Heinonen, Olle G.
2020.
Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice.
Physical Review Applied,
Vol. 13,
Issue. 4,
Kearns, Kaitlyn L.
Boyd, James D.
and
Grady, Martha E.
2020.
Biofilm Rupture by Laser-Induced Stress Waves Increases with Loading Amplitude, Independent of Location.
ACS Applied Bio Materials,
Vol. 3,
Issue. 3,
p.
1426.
Al-Abri, Ruqaiya
Choi, Hoyeon
and
Parkinson, Patrick
2021.
Measuring, controlling and exploiting heterogeneity in optoelectronic nanowires.
Journal of Physics: Photonics,
Vol. 3,
Issue. 2,
p.
022004.
Alexander, Francis J
Ang, James
Bilbrey, Jenna A
Balewski, Jan
Casey, Tiernan
Chard, Ryan
Choi, Jong
Choudhury, Sutanay
Debusschere, Bert
DeGennaro, Anthony M
Dryden, Nikoli
Ellis, J Austin
Foster, Ian
Cardona, Cristina Garcia
Ghosh, Sayan
Harrington, Peter
Huang, Yunzhi
Jha, Shantenu
Johnston, Travis
Kagawa, Ai
Kannan, Ramakrishnan
Kumar, Neeraj
Liu, Zhengchun
Maruyama, Naoya
Matsuoka, Satoshi
McCarthy, Erin
Mohd-Yusof, Jamaludin
Nugent, Peter
Oyama, Yosuke
Proffen, Thomas
Pugmire, David
Rajamanickam, Sivasankaran
Ramakrishniah, Vinay
Schram, Malachi
Seal, Sudip K
Sivaraman, Ganesh
Sweeney, Christine
Tan, Li
Thakur, Rajeev
Van Essen, Brian
Ward, Logan
Welch, Paul
Wolf, Michael
Xantheas, Sotiris S
Yager, Kevin G
Yoo, Shinjae
and
Yoon, Byung-Jun
2021.
Co-design Center for Exascale Machine Learning Technologies (ExaLearn).
The International Journal of High Performance Computing Applications,
Vol. 35,
Issue. 6,
p.
598.