Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T11:32:48.777Z Has data issue: false hasContentIssue false

Controllable directive radiation from dipole emitter coupled to dielectric nanowire antenna with substrate-mediated tunability

Published online by Cambridge University Press:  04 April 2018

Mohammad M. Salary
Affiliation:
Metamaterials Lab, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
Ali Forouzmand
Affiliation:
Metamaterials Lab, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
Hossein Mosallaei*
Affiliation:
Metamaterials Lab, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
*
Address all correspondence to Hossein Mosallaei at hosseinm@ece.neu.edu
Get access

Abstract

The present work demonstrates controllable directive radiation of a dipolar emitter coupled to a substrate-supported dielectric nanowire antenna. Nanoactuators, transparent-conducting oxides, and graphene are integrated into the substrate, respectively, to establish tunable antenna platforms in visible, near-infrared (IR), and far-IR frequency regimes. We exploit the substrate-induced interference effects and tunability mechanisms in each antenna system to achieve directive radiation with real-time steering capability. The design and modeling are rigorously carried out using an efficient and accurate semi-analytical framework based on transition matrix formulation. Each configuration is optimized to achieve maximal steering range while attaining a proper gain. Owing to subwavelength footprint, enhanced directionality, real-time tunability, and fairly simple geometry, the proposed platforms are ideal candidates for nanoantenna synthesis.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alù, A. and Engheta, N.: Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys. Rev. Lett. 104, 213902 (2010).CrossRefGoogle ScholarPubMed
2.Yang, Y., Li, Q., and Qiu, M.: Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Sci. Rep. 6, 19490 (2016).Google Scholar
3.Ahmadi, A., Ghadarghadr, S., and Mosallaei, H.: An optical reflectarray nanoantenna: the concept and design. Opt. Express 18, 123 (2009).Google Scholar
4.Maksymov, I., Staude, I., Miroshnichenko, A., and Kivshar, Y.: Optical yagi-uda nanoantennas. Nanophotonics 1, 6581 (2012).CrossRefGoogle Scholar
5.Patel, A. and Grbic, A.: A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59, 20872096 (2011).Google Scholar
6.Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Müllen, K., and Moerner, W.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654657 (2009).Google Scholar
7.Ureña, E., Kreuzer, M., Itzhakov, S., Rigneault, H., Quidant, R., Oron, D., and Wenger, J.: Excitation enhancement of a quantum dot coupled to a plasmonic antenna. Adv. Mater. 24, OP314OP320 (2012).Google Scholar
8.Vercruysse, D., Sonnefraud, Y., Verellen, N., Fuchs, F. B., Martino, G., Lagae, L., Moshchalkov, V., Maier, S., and Dorpe, P.: Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett. 13, 38433849 (2013).CrossRefGoogle ScholarPubMed
9.Evlyukhin, A., Reinhardt, C., Seidel, A., Luk'yanchuk, B., and Chichkov, B.: Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010).Google Scholar
10.Garcia-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L. S., López, C., Chantada, L., Scheffold, F., Aizpurua, J., Nieto-Vesperinas, M., and Sáenz, J. J.: Strong magnetic response of submicron Silicon particles in the infrared. Opt. Express 19, 48154826 (2011).Google Scholar
11.Albella, P., Shibanuma, T., and Maier, S.: Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 5, 18322 (2015).Google Scholar
12.Fu, Y., Kuznetsov, A., Miroshnichenko, A., Yu, Y., and Luk'yanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).CrossRefGoogle ScholarPubMed
13.Thorsen, R. and Arslanagić, S.: Eccentrically-layered active coated nano-particles for directive near- and far-field radiation. Photonics 2, 773794 (2015).Google Scholar
14.Krasnok, A., Simovski, C., Belov, P., and Kivshar, Y.: Superdirective dielectric nanoantennas. Nanoscale 6, 7354 (2014).Google Scholar
15.Novotný, L. and Hecht, B.: Principles of nano-optics, 1st ed. (Cambridge University Press, Cambridge, 2012).Google Scholar
16.Coenen, T., Bernal Arango, F., Femius Koenderink, A., and Polman, A.: Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).CrossRefGoogle ScholarPubMed
17.van de Groep, J. and Polman, A.: Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express 21, 26285 (2013).Google Scholar
18.Salary, M. and Mosallaei, H.: Tailoring optical forces for nanoparticle manipulation on layered substrates. Phys. Rev. B 94, 035410 (2016).Google Scholar
19.Markovich, D., Ginzburg, P., Samusev, A., Belov, P., and Zayats, A.: Magnetic dipole radiation tailored by substrates: numerical investigation. Opt. Express 22, 10693 (2014).CrossRefGoogle ScholarPubMed
20.Huang, Y., Lee, H., Sokhoyan, R., Pala, R., Thyagarajan, K., Han, S., Tsai, D., and Atwater, H.: Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 53195325 (2016).Google Scholar
21.Forouzmand, A. and Mosallaei, H.: Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface. J. Opt. 18, 125003 (2016).Google Scholar
22.Sherrott, M., Hon, P., Fountaine, K., Garcia, J., Ponti, S., Brar, V., Sweatlock, L., and Atwater, H.: Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 30273034 (2017).Google Scholar
23.Momeni Hasan Abadi, S., Booske, J., and Behdad, N.: MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas. J. Appl. Phys. 120, 054901 (2016).CrossRefGoogle Scholar
24.Cheng, J., Jafar-Zanjani, S., and Mosallaei, H.: Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation. Appl. Opt. 55, 6137 (2016).Google Scholar
25.Esquius-Morote, M., Gomez-Diaz, J., and Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 4, 116122 (2014).CrossRefGoogle Scholar
26.Burke, A., Carrad, D., Gluschke, J., Storm, K., Fahlvik Svensson, S., Linke, H., Samuelson, L., and Micolich, A.: InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett. 15, 28362843 (2015).Google Scholar
27.Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 6669 (2001).CrossRefGoogle ScholarPubMed
28.Mishchenko, M., Zakharova, N., Khlebtsov, N., Videen, G., and Wriedt, T.: Comprehensive thematic T-matrix reference database: a 2015–2017 update. J. Quant. Spectrosc. Radiat. Transf. 202, 240246 (2017).Google Scholar
29.Salary, M., Nazari, M., and Mosallaei, H.: Robust technique for computation of scattering and absorption of light by array of nanowires on layered substrate. J. Opt. Soc. Am. B 32, 2448 (2015).Google Scholar
30.Salary, M., Jafar-Zanjani, S., and Mosallaei, H.: Electromagnetic scattering from Bi-periodic fabric structures. Prog. Electromagn. Res. B 72, 3147 (2017).Google Scholar
31.Holsteen, A., Raza, S., Fan, P., Kik, P., and Brongersma, M.: Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358, 14071410 (2017).Google Scholar
32.Unlu, M. and Jarrahi, M.: Miniature multi-contact MEMS switch for broadband terahertz modulation. Opt. Express 22, 32245 (2014).Google Scholar
33.Zhao, X., Fan, K., Zhang, J., Keiser, G., Duan, G., Averitt, R., and Zhang, X.: Voltage-tunable dual-layer terahertz metamaterials. Microsyst. Nanoeng. 2, 16025 (2016).Google Scholar
34.Yakovlevich Prinz, V., Alexandrovich Seleznev, V., Victorovich Prinz, A., and Vladimirovich Kopylov, A.: 3D heterostructures and systems for novel MEMS/NEMS. Sci. Technol. Adv. Mater. 10, 034502 (2009).Google Scholar
35.Palik, E.: Handbook of optical constants of solids, 1st ed. (Academic Press, Orlando, 1985).Google Scholar
36.Johnson, P. and Christy, R.: Optical constants of the noble metals. Phys. Rev. B 6, 43704379 (1972).Google Scholar
37.Feigenbaum, E., Diest, K., and Atwater, H.: Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 21112116 (2010).Google Scholar
38.Hanson, G.: Dyadic green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).Google Scholar
39.Efetov, D. and Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).CrossRefGoogle ScholarPubMed
Supplementary material: File

Salary et al. supplementary material

Salary et al. supplementary material 1

Download Salary et al. supplementary material(File)
File 570.1 KB