Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T19:19:04.771Z Has data issue: false hasContentIssue false

Control of thermal and optoelectronic properties in conjugated poly(3-alkylthiophenes)

Published online by Cambridge University Press:  26 March 2014

Victor Ho
Affiliation:
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Bryan S. Beckingham
Affiliation:
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Hoi H. Ng
Affiliation:
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Rachel A. Segalman*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
*
Address all correspondence to Rachel A. Segalman at segalman@berkeley.edu
Get access

Abstract

The optoelectronic and thermal properties of conjugated polymers are frequently tuned via direct synthetic modification of the conjugated repeat unit. It is also well known that these properties are inherently tied to the crystal structure, a factor which is difficult to predict upon slight chemical modification. We show that the crystal structure of random copolymers of 3-alkylthiophenes can be controlled, which in turn affects the optoelectronic properties. Furthermore, we show that the melting transitions smoothly vary between that of the two homopolymers. As such, the composition of copolymers is a convenient handle to predictably control the thermal properties, crystalline morphology, and optoelectronic properties simultaneously.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Osaka, I. and McCullough, R.D.: Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202 (2008).Google Scholar
2.Elsenbaumer, R.L., Jen, K.Y., and Oboodi, R.: Processible and environmentally stable conducting polymers. Synth. Met. 15, 169 (1986).Google Scholar
3.Causin, V., Marega, C., Marigo, A., Valentini, L., and Kenny, J.M.: Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). Macromolecules 38, 409 (2005).Google Scholar
4.Malik, S. and Nandi, A.K.: Crystallization mechanism of regioregular poly(3-alkyl thiophene)s. J. Polym. Sci. B, Polym. Phys. 40, 2073 (2002).CrossRefGoogle Scholar
5.Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Lin, E.K., Richter, L.J., Chabinyc, M.L., Toney, M.F., Heeney, M., and McCulloch, I.: Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40, 7960 (2007).Google Scholar
6.Sheina, E.E., Khersonsky, S.M., Jones, E.G., and McCullough, R.D.: Highly conductive regioregular alkoxy-functionalized polythiophenes. Chem. Mater. 17, 3317 (2005).Google Scholar
7.Hong, X.M. and Collard, D.M.: Liquid crystalline regioregular semifluoroalkyl-substituted polythiophenes. Macromolecules 33, 6916 (2000).Google Scholar
8.Ho, V., Boudouris, B.W., and Segalman, R.A.: Tuning polythiophene crystallization through systematic side chain functionalization. Macromolecules 43, 7895 (2010).Google Scholar
9.Boudouris, B.W., Ho, V., Jimison, L.H., Toney, M.F., Salleo, A., and Segalman, R.A.: Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties. Macromolecules 44, 6653 (2011).CrossRefGoogle Scholar
10.Ho, V., Boudouris, B.W., McCulloch, B.L., Shuttle, C.G., Burkhardt, M., Chabinyc, M.L., and Segalman, R.A.: Poly(3-alkylthiophene) diblock copolymers with ordered microstructures and continuous semiconducting pathways. J. Am. Chem. Soc. 133, 9270 (2011).Google Scholar
11.Patel, S.N., Javier, A.E., Beers, K.M., Pople, J.A., Ho, V., Segalman, R.A., and Balsara, N.P.: Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett. 12, 4901 (2012).Google Scholar
12.Iovu, M.C., Jeffries-El, M., Zhang, R., Kowalewski, T., and McCullough, R.D.: Conducting block copolymer nanowires containing regioregular poly(3-Hexylthiophene) and polystyrene. J. Macromol. Sci., Pure Appl. Chem. 43, 1991 (2006).Google Scholar
13.Wu, P.T., Ren, G., and Jenekhe, S.A.: Crystalline random conjugated copolymers with multiple side chains: tunable intermolecular interactions and enhanced charge transport and photovoltaic properties. Macromolecules 43, 3306 (2010).Google Scholar
14.Zhang, Y., Tajima, K., and Hashimoto, K.: Nanostructure formation in poly(3-hexylthiophene-block-3-(2-ethylhexyl)thiophene)s. Macromolecules 42, 7008 (2009).Google Scholar
15.Burkhart, B., Khlyabich, P.P., and Thompson, B.C.: Influence of the ethylhexyl side-chain content on the open-circuit voltage in rr-poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) copolymers. Macromolecules 45, 3740 (2012).CrossRefGoogle Scholar
16.Loewe, R.S., Ewbank, P.C., Liu, J., Zhai, L., and McCullough, R.D.: Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 4324 (2001).CrossRefGoogle Scholar
17.Turner, S.T., Pingel, P., Steyrleuthner, R., Crossland, E.J.W., Ludwigs, S., and Neher, D.: Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance. Adv. Funct. Mater. 21, 4640 (2011).CrossRefGoogle Scholar
18.Spano, F.C.: Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly 3-hexylthiophene thin films. J. Chem. Phys. 122, 234701 (2005).Google Scholar
19.Spano, F.C.: Absorption in regio-regular poly(3-hexyl)thiophene thin films: fermi resonances, interband coupling and disorder. Chem. Phys. 325, 22 (2006).Google Scholar
20.Duong, D.T., Toney, M.F., and Salleo, A.: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. B, Condens. Matter. 86, 205205 (2012).Google Scholar
21.Clark, J., Silva, C., Friend, R.H., and Spano, F.C.: Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).Google Scholar
22.Barnes, M.D. and Baghar, M.: Optical probes of chain packing structure and exciton dynamics in polythiophene films, composites, and nanostructures. J. Polym. Sci. B, Polym. Phys. 50, 1121 (2012).Google Scholar
23.Niles, E.T., Roehling, J.D., Yamagata, H., Wise, A.J., Spano, F.C., Moule, A.J., and Grey, J.K.: J-aggregate behavior in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 3, 259 (2012).CrossRefGoogle Scholar
24.Fox, M.: Optical Properties of Solids, 2 ed. (Oxford University Press, New York, 2010).Google Scholar
25.Kittel, C.: Introduction to Solid State Physics, 8 ed. (John Wiley & Sons, Inc., New York, 2004).Google Scholar
26.Prosa, T.J., Winokur, M.J., Moulton, J., Smith, P., and Heeger, A.J.: X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules 25, 4364 (1992).CrossRefGoogle Scholar
27.Kayunkid, N., Uttiya, S., and Brinkmann, M.: Structural model of regioregular poly(3-hexylthiophene) obtained by electron diffraction analysis. Macromolecules 43, 4961 (2010).Google Scholar
28.Rivnay, J., Noriega, R., Kline, R.J., Salleo, A., and Toney, M.F.: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B, Condens. Matter. 84, 045203 (2011).Google Scholar
29.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013).CrossRefGoogle ScholarPubMed
30.Flory, P.J.: Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J. Chem. Phys. 17, 223 (1949).Google Scholar
31.Allegra, G. and Bassi, I.W.: Isomorphism in synthetic macromolecular systems. Adv. Polym. Sci. 6, 549 (1969).Google Scholar
32.Kamiya, N., Sakurai, M., Inoue, Y., and Chujo, R.: Isomorphic behavior of random copolymers: thermodynamic analysis of cocrystallization of poly(3-hydroxybutyrate-co-3-h ydroxyvalerate). Macromolecules 24, 3888 (1991).Google Scholar
33.Matsumoto, T., Nakamae, K., Ogoshi, N., Kawasoe, M., and Oka, H.: The crystallinity of ethylene-vinyl alcohol copolymers. Kobunshi Kagaku. 28, 610 (1971).Google Scholar
34.Nakamae, K., Kameyama, M., and Matsumoto, T.: Elastic moduli of the crystalline regions in the direction perpendicular to the chain axis of ethylene-vinyl alcohol copolymers. Polym. Eng. Sci. 19, 572 (1979).Google Scholar
35.Voigt-Martin, I.G. and Mandelkern, L.: Handbook of Polymer Science and Technology, 1 ed. (Marcel Dekker Publishers, New York, 1989).Google Scholar
36.Natta, G.: Progress in the stereospecific polymerization. Makromol. Chem. 35, 94 (1960).Google Scholar
37.Kreuz, J.A., Hsiao, B.S., Renner, C.A., and Goff, D.L.: Crystalline homopolyimides and copolyimides derived from 3,3′,4,4′-biphenyltetracarboxylic Dianhydride/1,3-Bis(4-aminophenoxy)benzene/l,12-dodecanediamine. 1. Materials, preparation, and characterization. Macromolecules 28, 6926 (1995).Google Scholar
38.Edgar, O.B. and Hill, R.: The p-phenylene linkage in linear high polymers: some structure–property relationships. Polym. Eng Sci. 8, 1 (1952).Google Scholar
Supplementary material: File

Ho Supplementary Material

Supplementary Material

Download Ho Supplementary Material(File)
File 444.9 KB