Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T10:09:34.129Z Has data issue: false hasContentIssue false

Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide

Published online by Cambridge University Press:  29 June 2018

Wennie Wang*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050, USA
Hartwin Peelaers
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050, USA
Jimmy-Xuan Shen
Affiliation:
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
Chris G. Van de Walle
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050, USA
*
Address all correspondence to Wennie Wang at wwwennie@engineering.ucsb.edu
Get access

Abstract

We present a first-principles investigation on the optical absorption of tungsten trioxide, an electrochromic material. Using state-of-the-art techniques, the absorption spectra are calculated for the cubic, monoclinic, and amorphous phases. For both crystalline and disordered structures, doping induces strong absorption in the infrared. Absorption in the visible range increases with the degree of structural distortion; the absorption coefficient in the blue exceeds 103 cm−1 at doping levels above 1020 cm−3 in the monoclinic phase. Increased disorder in disordered structures significantly enhances the visible-range absorption. We identify the microscopic mechanism as optical absorption originating at conduction-band-derived states that are filled by doping.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mortimer, R.J.: Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).Google Scholar
2.Ng, C.J.W.: Synthesis of Tungsten Oxide for Solar Energy Conversion and Water Splitting Applications. Ph.D. Thesis, The University of New South Wales, 2012.Google Scholar
3.Ingham, B., Hendy, S., Chong, S., and Tallon, J.: Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys. Rev. B 72, 075109 (2005).Google Scholar
4.Xue, Y., Zhang, Y. and Zhang, P.: Theory of the color change of NaxWO3 as a function of Na-charge doping. Phys. Rev. B 79, 205113 (2009).Google Scholar
5.Wang, F., Di Valentin, C., and Pacchioni, G.: Semiconductor-to-metal transition in WO3−x: nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011).Google Scholar
6.Schirmer, O.F., Wittwer, V., Baur, G., and Brandt, G.: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. Solid-State Sci. Technol. 124, 749 (1977).Google Scholar
7.Granqvist, C.G.: Electrochromic tungsten oxide films: review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).Google Scholar
8.Goldner, R.B., Norton, P., Wong, K., Foley, G., Goldner, E.L., Seward, G., and Chapman, R.: Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films. Appl. Phys. Lett. 47, 536 (1985).Google Scholar
9.Mendelsohn, D.H. and Goldner, R.B.: Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films. J. Electrochem. Soc. 131, 857 (1984).Google Scholar
10.Deneuville, A. and Gerard, P.: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).Google Scholar
11.Berggren, L., Ederth, J., and Niklasson, G.A.: Electrical conductivity as a function of temperature in amorphous lithium tungsten oxide. Sol. Energy Mater. Sol. Cells 84, 329 (2004).Google Scholar
12.Goldner, R.B., Mendelsohn, D.H., Alexander, J., Henderson, W.R., Fitzpatrick, D., Haas, T.E., Sample, H.H., Rauh, R.D., Parker, M.A., and Rose, T.L.: High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett. 43, 1093 (1983).Google Scholar
13.Berak, J.M. and Sienko, M.J.: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970).Google Scholar
14.Wang, W., Janotti, A., and Van de Walle, C.G.: Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641 (2016).Google Scholar
15.Ping, Y., Rocca, D., and Galli, G.: Optical properties of tungsten trioxide from first-principles calculations. Phys. Rev. B 87, 165203 (2013).Google Scholar
16.Peelaers, H., Kioupakis, E., and Van de Walle, C.G.: Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 100, 011914 (2012).Google Scholar
17.Peelaers, H. and Van de Walle, C.G.: Sub-band-gap absorption in Ga2O3. Appl. Phys. Lett. 111, 182104 (2017).Google Scholar
18.Peelaers, H., Steiauf, D., Varley, J.B., Janotti, A., and Van de Walle, C.G.: (InxGa1−x)2O3 alloys for transparent electronics. Phys. Rev. B 92, 085206 (2015).Google Scholar
19.Yates, J.R., Wang, X., Vanderbilt, D., and Souza, I.: Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).Google Scholar
20.Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., and Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).Google Scholar
21.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
22.Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
23.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).Google Scholar
24.Perdew, J., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
25.de Wijs, G.A. and de Groot, R.A.: Structure and electronic properties of amorphous WO3. Phys. Rev. B 60, 16463 (1999).Google Scholar
26.Wang, W., Janotti, A., and Van de Walle, C.G.: Phase transformations upon doping in WO3. J. Chem. Phys. 146, 214504 (2017).Google Scholar
27.Lynch, D., Rosei, R., Weaver, J., and Olson, C.: The optical properties of some alkali metal tungsten bronzes from 0.1 to 38 eV. J. Solid State Chem. 8, 242 (1973).Google Scholar
28.Wen, R.-T., Granqvist, C.G., and Niklasson, G.A.: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996 (2015).Google Scholar
29.Lee, S.-H., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H., and Dillon, A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763 (2006).Google Scholar
30.Bondarenko, N., Eriksson, O., and Skorodumova, N.V.: Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide. Phys. Rev. B 92, 165119 (2015).Google Scholar
Supplementary material: File

Wang et al. supplementary material 1

Wang et al. supplementary material

Download Wang et al. supplementary material 1(File)
File 974.6 KB