Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T21:59:50.619Z Has data issue: false hasContentIssue false

Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes

Published online by Cambridge University Press:  10 June 2015

Kyung Min Lee
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433-7750; Azimuth Corporation, 4027 Colonel Glenn Hwy, Dayton, Ohio 45431, USA
Vincent P. Tondiglia
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433-7750; Leidos, 3745 Pentagon Boulevard, Beavercreek, Ohio 45431, USA
Timothy J. White*
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433-7750, USA
*
Address all correspondence to Timothy J. White atTimothy.White.24@us.af.mil
Get access

Abstract

We report on the ability to switch an optical material composed of a polymer stabilized cholesteric liquid crystal (polymer stabilized cholesteric texture, PSCT) between stable transparent (reflective) and scattering modes. The degree of scattering is controllable with the strength of the applied electric field. The mechanism for bistable switching of the PSCT is distinguished from prior examinations by employing electromechanical displacement of a stabilizing polymer network. The stable transparent (reflective) or scattering modes are induced with a variety of driving schemes employing both alternating and direct current fields. The relative degree of scattering can be varied to allow for grayscale control potentially useful in smart window and display applications.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.de Gennes, P.G. and Prost, J.: The Physics of Liquid Crystals (Oxford University Press, Oxford, UK, 1993).Google Scholar
2.Wu, S.T. and Yang, D.-K.: Reflective Liquid Crystal Displays (Wiley, West Sussex, UK, 2001).Google Scholar
3.Yang, D.-K., Chien, C.-C., and Donna, J.W.: Cholesteric liquid crystal/polymer dispersion for hazy-free light shutters. Appl. Phys. Lett. 60, 31023104 (1992).Google Scholar
4.Yang, D.-K., Doane, J.W., Yaniv, Z., and Glasser, J.: Cholesteric reflective display: drive scheme and contrast. Appl. Phys. Lett. 64, 19051907 (1994).Google Scholar
5.Yang, D.-K., West, J.L., Chien, L.-C., and Doane, J.W.: Control of reflectivity and bistability in displays using cholesteric liquid crystals. J. Appl. Phys. 76, 13311333 (1994).CrossRefGoogle Scholar
6.Lu, M.-H.: Bistable reflective cholesteric liquid crystal display. J. Appl. Phys. 81, 10631066 (1997).Google Scholar
7.Taheri, B., Doane, J.W., Davis, D., and St. John, D.: Optical properties of bistable cholesteric reflective displays. SID Int. Symp. Digest of Technical Papers, vol. 27, pp. 39–42, 1996.Google Scholar
8.Anderson, J., Watson, P., Ruth, J., Sergan, V., and Bos, P.: Fast frame rate bistable cholesteric texture reflective displays. SID Int. Symp. Digest of Technical Papers, vol. 29, pp. 806–809, 1998.Google Scholar
9.Yang, D.-K.: Flexible bistable cholesteric reflective displays. J. Disp. Technol. 2, 3237 (2006).Google Scholar
10.Li, C.-C., Tseng, H.-Y., Pai, T.-W., Wu, Y.-C., Hsu, W.-H., Jau, H.-C., Chen, C.-W., and Lin, T.-H.: Bistable cholesteric liquid crystal light shutter with multielectrode driving. Appl. Opt. 53, E33E37 (2014).Google Scholar
11.Huang, C.-Y., Fu, K.-Y., Lo, K.-Y., and Tsai, M.-S.: Bistable transflective cholesteric light shutters. Opt. Express 11, 560565 (2003).CrossRefGoogle ScholarPubMed
12.Lin, F.-C. and Lee, W.: Color-reflective dual frequency cholesteric liquid crystal displays and their drive schemes. Appl. Phys. Express 4, 112201 (2011).Google Scholar
13.Kumar, P., Kang, S.-W. and Lee, S.H.: Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Opt. Mater. Express 2, 11211134 (2012).CrossRefGoogle Scholar
14.Xu, M. and Yang, D.-K.: Dual frequency cholesteric liquid crystals. Appl. Phys. Lett. 70, 720722 (1997).Google Scholar
15.Wen, C.-H. and Wu, S.T.: Dielectric heating effects of dual-frequency liquid crystals. Appl. Phys. Lett. 86, 231104 (2005).Google Scholar
16.Zhang, F. and Yang, D.-K.: Polymer stabilized cholesteric dichroic dye displays. SID Symp. Digest of Technical Papers, vol. 33, pp. 469–471, 2002.Google Scholar
17.Lin, Y.-H., Ren, H., Fan, Y.-H., Wu, Y.-H., and Wu, S.-T.: Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture. J. Appl. Phys. 98, 043112 (2005).CrossRefGoogle Scholar
18.Ren, H. and Wu, S.-T.: Reflective reversed-mode polymer stabilized cholesteric texture light switches. J. Appl. Phys. 92, 797800 (2002).Google Scholar
19.Yin, Y., Li, W., Cao, H., Guo, J., Li, B., He, S., Ouyang, C., Cao, M., Huang, H., and Yang, H.: Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture. J. Appl. Polym. Sci. 111, 13531357 (2009).CrossRefGoogle Scholar
20.Tondiglia, V.P., Natarajan, L.V., Bailey, C.A., Duning, M.M., Sutherland, R.L., Yang, D.-k, Voevodin, A., White, T.J., and Bunning, T.J.: Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J. Appl. Phys. 110, 053109/1-053109/5338 (2011).Google Scholar
21.Tondiglia, V.P., Natarajan, L.V., Bailey, C.A., McConney, M.E., Lee, K.M., Bunning, T.J., Zola, R., Nemati, H., Yang, D.-k, and White, T.J.: Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt. Mater. Express 4, 14651472 (2014).CrossRefGoogle Scholar
22.Lee, K.M., Tondiglia, V.P., McConney, M.E., Natarajan, L.V., Bunning, T.J., and White, T.J.: Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics 1, 10331041 (2014).Google Scholar
23.Nemati, H., Liu, S., Zola, R., Tondiglia, V.P., Lee, K.M., White, T.J., Bunning, T.J., and Yang, D.-k: Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter 11, 12081213 (2015).Google Scholar
24.McConney, M.E., Tondiglia, V.P., Natarajan, L.V., Lee, K.M., White, T.J., and Bunning, T.J.: Electrically induced color changes in polymer-stabilized cholesteric liquid crystals. Adv. Opt. Mater. 1, 417421 (2013).Google Scholar
25.White, T.J., Lee, K.M., McConney, M.E., Tondiglia, V.P., Natarajan, L.V., and Bunning, T.J.: Stimuli-responsive cholesteric liquid crystal composites for optics and photonics. SID Symp. Digest of Technical Papers, vol. 45, pp. 555558, 2014.CrossRefGoogle Scholar