Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T22:46:10.542Z Has data issue: false hasContentIssue false

Birth of silicon nanowires covered with protective insulating blanket

Published online by Cambridge University Press:  20 September 2017

Krishna Nama Manjunatha
Affiliation:
Emerging Technologies Research Center, De Montfort University, The Gateway, Leicester LE18BH, UK
Shashi Paul*
Affiliation:
Emerging Technologies Research Center, De Montfort University, The Gateway, Leicester LE18BH, UK
*
Address all correspondence to Shashi Paul at spaul@dmu.ac.uk
Get access

Abstract

Core–shell silicon–silicon oxide nanowires are synthesized at low temperatures using inorganic and organic compounds of a tin as a catalyst. In situ simultaneous one-dimensional growth of pristine silicon nanowires (SiNWs) using alloy catalyst is reported here. Such a development process generates a high-quality SiNW that is not determined by other atomic species in the plasma. A possible growth model is discussed to understand the synchronized precipitation of a SiNW core and an oxide shell. Nanowires grown here eliminate the additional fabrication steps to deposit anticipated oxide shell that is achieved by precipitation from the same catalyst that precipitates core nanowires.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cui, L., Ruffo, R., Chan, C.K., Peng, H. and Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491495 (2009).Google Scholar
2. Lim, K.W., Lee, J., Yang, J., Kim, Y., Jeong, H.Y., Park, S. and Shin, H-S.: Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and high-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 63406345 (2014).Google Scholar
3. Nie, T., Chen, Z., Wu, Y., Wang, J., Zhang, J., Fan, Y., Yang, X., Jiang, Z. and Zou, J.: Metallic and ionic Fe induced growth of Si-SiOx core-shell nanowires. J. Phys. Chem. C 114, 1537015376 (2010).Google Scholar
4. Kim, S., Kim, C.O., Shin, D.H., Hong, S.H., Kim, M.C., Kim, J., Choi, S., Kim, T., Elliman, R.G. and Kim, Y.: Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires. Nanotechnology 21, 205601205607 (2010).Google Scholar
5. Zhang, F., Sun, B., Song, T., Zhu, X. and Lee, S.: Air stable, efficient hybrid photovoltaic devices based on Poly(3-hexylthiophene) and silicon nanostructures. Chem. Mater. 23, 20842090 (2011).Google Scholar
6. Bashouti, M.Y., Pietsch, M., Brönstrup, G., Sivakov, V., Ristein, J. and Christiansen, S.: Heterojunction based hybrid silicon nanowire solar cell: surface termination, photoelectron and photoemission spectroscopy study. Prog. Photovolt. Res. Appl. 22, 10501061 (2014).Google Scholar
7. Lin, Y., Chen, Y., Xu, D. and Huang, Y.: Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Lett. 10, 47214726 (2010).Google Scholar
8. Baranov, E.A., Zamchiy, A.O. and Khmel, S.Y.: Synthesis and morphology of silicon oxide nanowires from a free jet activated by electron-beam plasma. J. Eng. Thermophys. 25, 239247 (2016).Google Scholar
9. Chiew, Y.L. and Cheong, K.Y.: Formation and characterization of SiOx nanowires and Si/SiOx core-shell nanowires via carbon-assisted growth. Physica E 42, 13381342 (2010).Google Scholar
10. Zhang, R., Lifshitz, Y. and Lee, S.: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635640 (2003).Google Scholar
11. Zamchiy, A., Baranov, E. and Khmel, S.: New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. Phys. Status Solidi C, Curr. Top. Solid State Phys. 11, 13971400 (2014).Google Scholar
12. Misra, S., Yu, L., Chen, W., Foldyna, M. and Roca I Cabarrocas, P.: A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells. J. Phys. D 47, 393001393021 (2014).Google Scholar
13. Gabrielyan, N., Saranti, K., Manjunatha, K.N. and Paul, S.: Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications. Nanoscale Res. Lett. 8, 17 (2013).Google Scholar
14. Tang, J., Maurice, J., Chen, W., Misra, S., Foldyna, M., Johnson, E.V. and Roca i Cabarrocas, P.: Plasma-assisted growth of silicon nanowires by Sn catalyst: step-by-step observation. Nanoscale Res. Lett. 11(1), 455 (2016).Google Scholar
15. Yu, L., O'Donnell, B., Foldyna, M. and Roca i Cabarrocas, P.: Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires. Nanotechnology 23, 194 (2012).Google Scholar
16. Yu, L., Alet, P., Picardi, G., Maurin, I. and Roca I Cabarrocas, P.: Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2 substrates. Nanotechnology 19, 485605485609 (2008).Google Scholar
17. Alet, P., Yu, L., Patriarche, G., Palacin, S. and Roca I Cabarrocas, P.: In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO. J. Mater. Chem. 18, 51875189 (2008).Google Scholar
18. Luo, L., Liang, F. and Jie, J.: Sn-catalyzed synthesis of SnO2 nanowires and their optoelectronic characteristics. Nanotechnology 22, 485701485707 (2011).Google Scholar
19. Hofmann, S., Sharma, R., Wirth, C.T., Cervantes-Sodi, F., Ducati, C., Kasama, T., Dunin-Borkowski, R.E., Drucker, J., Bennett, P. and Robertson, J.: Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 7, 372375 (2008).Google Scholar
20. Yu, L., O'Donnell, B., Alet, P., Conesa-Boj, S., Peiro, F., Arbiol, J. and Roca I Cabarrocas, P.: Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20, 225604225608 (2009).Google Scholar
21. Belford, T.N. and Alcock, C.B.: Thermodynamics and solubility of oxygen in liquid metals from E.M.F. measurements involving solid electrolytes: Part 2.—Tin. Trans. Faraday Soc. 61, 443453 (1965).CrossRefGoogle Scholar
22. Thurmond, C.D.: Equilibrium thermochemistry of solid and liquid alloys of germanium and of silicon. I. The solubility of Ge and Si in elements of groups III, IV and V. J. Phys. Chem. 57, 827830 (1953).Google Scholar
23. Dean, J.A.: Lange's handbook of chemistry. Mater. Manuf. Process. 5, 687688 (1990).Google Scholar
24. Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N. and Lee, S.T.: High reactivity of silicon suboxide clusters. Phys. Rev. B, Condens. Matter Mater. Phys. 64, 11330411133044 (2001).Google Scholar
25. Zhang, R.: Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations (Springer Science & Business Media, Springer-Verlag, Berlin, 2013).Google Scholar
Supplementary material: File

Nama Manjunatha and Paul supplementary material

Tables S1-S5

Download Nama Manjunatha and Paul supplementary material(File)
File 5.6 MB