Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T22:47:36.606Z Has data issue: false hasContentIssue false

Bimodal nanoporous platinum on sacrificial nanoporous copper for catalysis of the oxygen-reduction reaction

Published online by Cambridge University Press:  22 November 2018

Masataka Hakamada*
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501 Kyoto, Japan
Yuto Sato
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501 Kyoto, Japan
Mamoru Mabuchi
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501 Kyoto, Japan
*
Address all correspondence to Masataka Hakamada at hakamada.masataka.3x@kyoto-u.ac.jp
Get access

Abstract

Bimodal nanoporous platinum (BNP-Pt) is synthesized by using a sacrificial nanoporous copper (NP-Cu) support for oxygen-reduction-reaction (ORR) catalysts in fuel cells. The specific ORR catalytic activity of BNP-Pt increases by the dissolution and removal of supporting NP-Cu, suggesting that the BNP structure improves the intrinsic catalytic properties of platinum. The lattice contraction of BNP-Pt containing residual copper even after NP-Cu removal is milder than predicted by Vegard's law. The BNP structure governs the intrinsic catalytic activity of the platinum by relaxing the lattice contraction and by alloying with copper and/or misfit strain at the Pt/Cu interface.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stephens, I.E.L., Bondarenko, A.S., Grønbjerg, U., Rossemeisl, J., and Chorkendorff, I.: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744 (2012).10.1039/c2ee03590aGoogle Scholar
2.Wikander, K., Ekström, H., Palmqvist, A.E.C., and Lindbergh, G.: On the influence of Pt particle size on the PEMFC cathode performance. Electrochim. Acta 52, 6848 (2007).Google Scholar
3.Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C.-Y., Yu, R., Zhang, Q., Gu, L., Merinov, B.V., Lin, Z., Zhu, E., Yu, T., Jia, Q., Guo, J., Zhang, L., Goddard, W.A. III, Huang, Y., and Duan, X.: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414 (2016).Google Scholar
4.Wang, H., Xu, S., Tsai, C., Li, Y., Liu, C., Zhao, J., Liu, Y., Yuan, H., Abild-Pedersen, F., Prinz, F.B., Nørskov, J.K., and Cui, Y.: Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031 (2016).10.1126/science.aaf7680Google Scholar
5.Zhang, Y., Ma, C., Zhu, Y., Si, R., Cai, Y., Wang, J.X., and Adzic, R.A.: Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal. Today 202, 50 (2013).Google Scholar
6.Forty, A.J.: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).10.1038/282597a0Google Scholar
7.Pugh, D.V., Dursun, A., and Corcoran, S.G.: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 18, 216 (2003).10.1557/JMR.2003.0030Google Scholar
8.Keir, D.S. and Pryor, M.J.: The dealloying of copper-manganese alloys. J. Electrochem. Soc. 127, 2138 (1980).10.1149/1.2129360Google Scholar
9.Min, U.-S. and Li, J.C.M.: The microstructure and dealloying kinetics of a Cu-Mn alloy. J. Mater. Res. 9, 2878 (1994).Google Scholar
10.Hayes, J.R., Hodge, A.M., Biener, J., Hamza, A.V., and Sieradzki, K.: Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 21, 2611 (2006).Google Scholar
11.Kong, X., Ma, C., Zhang, J., Sun, J., Chen, J., and Liu, K.: Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate. Appl. Catal. A-Gen. 509, 153 (2016).Google Scholar
12.Feng, Q., Liu, S., Wang, Z., and Jin, G.: Nanoporous copper incorporated platinum composites for electrocatalytic reduction of CO2 in ionic liquid BMIMBF4. Appl. Surf. Sci. 258, 5005 (2012).Google Scholar
13.Okamoto, H.: Cu-Mn (Copper-Manganese). J. Phase Equilib. 19, 180 (1998).10.1361/105497198770342661Google Scholar
14.Coleman, E.J. and Co, A.C.: Galvanic displacement of Pt on nanoporous copper: an alternative synthetic route for obtaining robust and reliable oxygen reduction activity. J. Catal. 316, 191 (2014).Google Scholar
15.Trasatti, S. and Petrii, O.A.: Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353 (1992).Google Scholar
16.Garsany, Y., Baturina, O.A., Swider-Lyons, K.E., and Kocha, S.S.: Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321 (2010).Google Scholar
17.Hu, J., Kuttiyiel, K.A., Sasaki, K., Su, D., Yang, T.-H., Park, G.-G., Zhang, C., Chen, G., and Adzic, R.R.: Pt monolayer shell on nitrided alloy core—a path to highly stable oxygen reduction catalyst. Catalysts 5, 1321 (2015).Google Scholar
18.He, L.-L., Song, P., Wang, A.-J., Zheng, J.-N., Mei, L.-P., and Feng, J.-J.: A general strategy for the facile synthesis of AuM (M = Pt/Pd) alloyed flowerlike-assembly nanochains for enhanced oxygen reduction reaction. J. Mater. Chem. A 3, 5352 (2015).10.1039/C4TA06627HGoogle Scholar
19.Zheng, J.-N., He, L.-L., Chen, F.-Y., Wang, A.-J., Xue, M.-W., and Feng, J.-J.: Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media, Electrochim. Acta 137, 431 (2014).Google Scholar
20.Cui, R., Mei, L., Han, G., Chen, J., Zhang, G., Quan, Y., Gu, N., Zhang, L., Fang, Y., Qian, B., Jiang, Z., and Han, Z.: Facile synthesis of nanoporous Pt-Y alloy with enhanced electrocatalytic activity and durability. Sci. Rep. 7, 41826 (2016).10.1038/srep41826Google Scholar
21.Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, G., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., and Nilsson, A.: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454 (2010).10.1038/nchem.623Google Scholar
22.Bu, L., Shao, Q., E, Bin, Guo, J., Yao, J., and Huang, X.: PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 139, 95769582 (2017).Google Scholar
23.Lu, B.-A., Sheng, T., Tian, N., Zhang, Z.-C., Xiao, C., Cao, Z.-M., Ma, H.-B., Zhou, Z.-Y., and Sun, S.-G.: Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 33, 65 (2017).10.1016/j.nanoen.2017.01.003Google Scholar
24.Park, J., Kabiraz, M.K., Kwon, H., Park, S., Baik, H., Choi, S.-I., and Lee, K.: Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 11, 10844 (2017).10.1021/acsnano.7b04097Google Scholar
25.Godínez-Salomón, F., Mendoza-Cruz, R., Arellano-Jimenez, M.J., Jose-Yacaman, M., and Rhodes, C.P.: Metallic two-dimensional nanoframes: unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Appl. Mater. Interf. 9, 18660 (2017).10.1021/acsami.7b00043Google Scholar
26.Rhen, F.M.F. and McKeown, C.: Enhanced methanol oxidation on strained Pt films. J. Phys. Chem. C 121, 2556 (2017).10.1021/acs.jpcc.6b11290Google Scholar
27.Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9 (2005).10.1016/j.apcatb.2004.06.021Google Scholar
28.Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M., and Mabuchi, M.: Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 114, 868 (2010).10.1021/jp909479mGoogle Scholar
29.Fujita, T., Guan, P., McKeena, K., Lang, X.Y., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.W.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).10.1038/nmat3391Google Scholar
30.Hakamada, M., Takahashi, M., Furukawa, T., and Mabuchi, M.: Surface effects on saturation magnetization in nanoporous Ni. Philos. Mag. 90, 1915 (2010).10.1080/14786430903571461Google Scholar