Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T12:52:12.012Z Has data issue: false hasContentIssue false

Beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films during transmission electron microscopy

Published online by Cambridge University Press:  28 August 2013

Olof Tengstrand*
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Nils Nedfors
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
Matilda Andersson
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
Jun Lu
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Ulf Jansson
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
Axel Flink
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden; Impact Coatings AB, Westmansgatan 29, SE-582 16 Linköping, Sweden
Per Eklund
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
*
Address all correspondence to Olof Tengstrand atolote@ifm.liu.se
Get access

Abstract

We report that an electron beam focused for high-resolution imaging rapidly initiates observable crystallization of amorphous Me–Si–C films. For 200-keV electron irradiation of Nb–Si–C and Zr–Si–C films, crystallization is observed at doses of ~2.8 × 109 and ~4.7 × 109 e/nm2, respectively. The crystallization process is driven by atomic displacement events, rather than heating from the electron beam as in situ annealing (400–600 °C) retains the amorphous state. Our findings demand a critical analysis of alleged amorphous and nanocrystalline ceramics including reassessing previous reports on nanocrystalline Me–Si–C films for possible electron-beam-induced crystallization effects.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).Google Scholar
2.Hobbs, L.W., Clinard, F.W. Jr., Zinkle, S.J., and Ewing, R.C.: Radiation effects in ceramics. J. Nucl. Mater. 216, 291 (1994).Google Scholar
3.Bae, I.T., Ishimaru, M., and Hirotsu, Y.: Structural changes of SiC under electron-beam irradiation: temperature dependence. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 315 (2006).CrossRefGoogle Scholar
4.McCartney, M., Crozier, P., Weiss, J., and Smith, D.J.: Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42, 301 (1991).Google Scholar
5.Jenčič, I., Bench, M.W., Robertson, I.M., and Kirk, M.A.: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).Google Scholar
6.Nagase, T., Sanda, T., Nino, A., Qin, W., Yasuda, H., Mori, H., Umakoshi, Y., and Szpunar, J.A.: MeV electron irradiation induced crystallization in metallic glasses: atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. J. Non-Cryst. Solids 358, 502 (2012).Google Scholar
7.Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009), pp. 6468.CrossRefGoogle Scholar
8.Martínez-Martínez, D., López-Cartes, C., Fernández, A., and Sánchez-López, J.C.: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 1662 (2009).Google Scholar
9.Nedfors, N., Tengstrand, O., Lewin, E., Furlan, A., Eklund, P., Hultman, L., and Jansson, U.: Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Technol. 206, 354 (2011).CrossRefGoogle Scholar
10.Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P.A., and Patscheider, J.: Wear protective coatings consisting of TiC-SiC-a-C: H deposited by magnetron sputtering. Surf. Coat. Technol. 163–164, 238 (2003).Google Scholar
11.Eklund, P., Emmerlich, J., Högberg, H., Wilhelmsson, O., Isberg, P., Birch, J., Å Persson, P.O., Jansson, U., and Hultman, L.: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486 (2005).Google Scholar
12.Eklund, P.: Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406 (2007).Google Scholar
13.Lopes, C., Parreira, N.M.G., Carvalho, S., Cavaleiro, A., Rivière, J.P., Le Bourhis, E., and Vaz, F.: Magnetron sputtered Ti-Si-C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180 (2007).Google Scholar
14.Lauridsen, J., Eklund, P., Joelsson, T., Ljungcrantz, H., Öberg, Å., Lewin, E., Jansson, U., Beckers, M., Högberg, H., and Hultman, L.: High-rate deposition of amorphous and nanocomposite Ti-Si-C multifunctional coatings. Surf. Coat. Technol. 205, 299 (2010).Google Scholar
15.Naka, M., Sakai, H., Maeda, M., and Mori, H.: Formation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng., A 226–228, 774 (1997).Google Scholar
16.Kádas, K., Andersson, M., Holmström, E., Wende, H., Karis, O., Urbonaite, S., Butorin, S.M., Nikitenko, S., Kvashnina, K.O., Jansson, U., and Eriksson, O.: Structural properties of amorphous metal carbides: theory and experiment. Acta Mater. 60, 4720 (2012).Google Scholar
17.Krzanowski, J.E. and Wormwood, J.: Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films: compositional routes for film densification and hardness enhancement. Surf. Coat. Technol. 201, 2942 (2006).CrossRefGoogle Scholar
18.Endrino, J.L. and Krzanowski, J.E.: Nanostructure and mechanical properties of WC-SiC thin films. J. Mater. Res. 17, 3163 (2002).Google Scholar
19.Nedfors, N., Tengstrand, O., Flink, A., Eklund, P., Hultman, L., and Jansson, U.: Multifunctional amorphous and nanocomposite Nb-Si-C coatings deposited by DC magnetron sputtering. Thin Solid Films. DOI:10.1016/j.tsf.2013.08.066.Google Scholar
20.Andersson, M., Urbonaite, S., Lewin, E., and Jansson, U.: Magnetron sputtering of Zr-Si-C thin films. Thin Solid Films 520, 6375 (2012).Google Scholar
21.Lewin, E., Gorgoi, M., Schäfers, F., Svensson, S., and Jansson, U.: Influence of sputter damage on the XPS analysis of metastable nanocomposite coatings. Surf. Coat. Technol. 204, 455 (2009).Google Scholar
22.Walck, S.D. and McCaffrey, J.P.: The small angle cleavage technique applied to coatings and thin films. Thin Solid Films 308–309, 399 (1997).Google Scholar
23.McCaffrey, J.P.: Small-angle cleavage of semiconductors for transmission electron microscopy. Ultramicroscopy 38, 149 (1991).Google Scholar
24.Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).Google Scholar
25.Hobbs, L.W.: Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339 (1987).Google Scholar