Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T22:28:13.977Z Has data issue: false hasContentIssue false

An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection

Published online by Cambridge University Press:  03 September 2018

Shine Augustine
Affiliation:
Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi-110042, India
Amish G. Joshi
Affiliation:
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
Birendra Kumar Yadav
Affiliation:
Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085, India
Anurag Mehta
Affiliation:
Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085, India
Pragati Kumar
Affiliation:
Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India
Venkatesan Renugopalakrishanan
Affiliation:
Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
Bansi D. Malhotra*
Affiliation:
Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi-110042, India
*
Address all correspondence to Bansi D. Malhotra at bansi.malhotra@gmail.com
Get access

Abstract

We report results of the studies relating to the development of the emerging nanostructured molybdenum trioxide (nMoO3)-based biocompatible label-free biosensing platform for breast cancer detection. The structural and morphological studies of the synthesized nMoO3 nanorods were investigated by XRD, SEM, X-ray photoelectron spectroscopic, and TEM techniques. This biocompatible one-dimensional (1D) nMoO3-based biosensing platform exhibited high sensitivity (0.904 µAmL/ng/cm2), wide linear detection range (2.5–110 ng/mL), and a lower detection limit as 2.47 ng/mL toward human epidermal growth factor receptor-2 detection. The results obtained using this sensor platform on serum samples of breast cancer patients were validated using ELISA.

Type
2D Nanomaterials for Healthcare and Lab-on-a-Chip Devices Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., and Malhotra, B.D.: Recent advances in carbon based nanosystems for cancer theranostics. Biomater. Sci. 5, 901 (2017).Google Scholar
2.Bagchi, D., Maji, T.K., Sardar, S., Lemmens, P., Bhattacharya, C., Karmakar, D., and Pal, S.K.: Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies. Phys. Chem. Chem. Phys. 19, 2503 (2017).Google Scholar
3.Hahm, J.-I.: Fundamental properties of one-dimensional zinc oxide nanomaterials and implementations in various detection modes of enhanced biosensing. Annu. Rev. Phys. Chem. 67, 691 (2016).Google Scholar
4.Liu, X., Guo, Q., and Qiu, J.: Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. (2017).Google Scholar
5.Stewart, B. and Wild, C.P.: World cancer report 2014. Health (2017).Google Scholar
6.Adair, F., Berg, J., Joubert, L., and Robbins, G.F.: Long-term followup of breast cancer patients: the 30-year report. Cancer 33, 1145 (1974).Google Scholar
7.Sankaranarayanan, R., Ramadas, K., Thara, S., Muwonge, R., Prabhakar, J., Augustine, P., Venugopal, M., Anju, G., and Mathew, B.S.: Clinical breast examination: preliminary results from a cluster randomized controlled trial in India. J. Natl. Cancer Inst. 103, 1476 (2011).Google Scholar
8.Okonkwo, Q.L., Draisma, G., der Kinderen, A., Brown, M.L., and de Koning, H.J.: Breast cancer screening policies in developing countries: a cost-effectiveness analysis for India. JNCI 100, 1290 (2008).Google Scholar
9.Chiarelli, A.M., Majpruz, V., Brown, P., Thériault, M., Shumak, R., and Mai, V.: The contribution of clinical breast examination to the accuracy of breast screening. 101, 1236 (2009).Google Scholar
10.Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177 (1987).Google Scholar
11.Bleyer, A. and Welch, H.G.: Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 367, 1998 (2012).Google Scholar
12.Bohunicky, B. and Mousa, S.A.: Biosensors: the new wave in cancer diagnosis. Nanotechnology, science and applications 4, 110 (2011).Google Scholar
13.Ali, M.A., Srivastava, S., Mondal, K., Chavhan, P.M., Agrawal, V.V., John, R., Sharma, A., and Malhotra, B.D.: A surface functionalized nanoporous titania integrated microfluidic biochip. Nanoscale 6, 13958 (2014).Google Scholar
14.Goode, J., Rushworth, J., and Millner, P.: Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31, 6267 (2014).Google Scholar
15.Le Naour, F., Misek, D.E., Krause, M.C., Deneux, L., Giordano, T.J., Scholl, S., and Hanash, S.M.: Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin. Cancer Res. 7, 3328 (2001).Google Scholar
16.Ravalli, A., da Rocha, C.G., Yamanaka, H., and Marrazza, G.: A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry 106, 268 (2015).Google Scholar
17.Chandra, P., Suman, P., Mukherjee, M., and Kumar, P.: HER2 protein biomarker based sensor systems for breast cancer diagnosis. J. Mol. Biomark. Diagn. 5, e119 (2013).Google Scholar
18.Gohring, J.T., Dale, P.S., and Fan, X.: Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens. Actuators B 146, 226 (2010).Google Scholar
19.Tchou, J., Lam, L., Li, Y.R., Edwards, C., Ky, B., and Zhang, H.: Monitoring serum HER2 levels in breast cancer patients. Springerplus. 4, 1 (2015).Google Scholar
20.Fehm, T., Becker, S., Duerr-Stoerzer, S., Sotlar, K., Mueller, V., Wallwiener, D., Lane, N., Solomayer, E., and Uhr, J.: Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res. 9, 1 (2007).Google Scholar
21.Al-Khafaji, Q., Harris, M., Tombelli, S., Laschi, S., Turner, A., Mascini, M., and Marrazza, G.: An electrochemical immunoassay for HER2 detection. Electroanalysis 24, 735 (2012).Google Scholar
22.Kolhar, P., Anselmo, A.C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., and Mitragotri, S.: Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. USA 110, 10753 (2013).Google Scholar
23.Barua, S., Yoo, J.-W., Kolhar, P., Wakankar, A., Gokarn, Y.R., and Mitragotri, S.: Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. USA 110, 3270 (2013).Google Scholar
24.Chen, J.S., Cheah, Y.L., Madhavi, S., and Lou, X.W.: Fast synthesis of α-MoO3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities. J. Phys. Chem. C 114, 8675 (2010).Google Scholar
25.Solanki, P.R., Singh, J., Rupavali, B., Tiwari, S., and Malhotra, B.D.: Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng. C 70, 564 (2017).Google Scholar
26.Pumera, M. and Loo, A.H.: Layered transition-metal dichalcogenides (MoS 2 and WS 2) for sensing and biosensing. TrAC Trends Anal. Chem. 61, 49 (2014).Google Scholar
27.Tadi, K.K., Narayanan, T.N., Arepalli, S., Banerjee, K., Viswanathan, S., Liepmann, D., Ajayan, P.M., and Renugopalakrishnan, V.: Engineered 2D nanomaterials – protein interfaces for efficient sensors. J. Mater. Res. 30, 3565 (2015).Google Scholar
28.Rao, C. and Raveau, B.: Transition metal oxides. Annu. Rev. Phys. Chem. 40, 291 (1989).Google Scholar
29.Shakir, I., Shahid, M., Yang, H.W., Cherevko, S., Chung, C.-H., and Kang, D.J.: α-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J. Solid State Electrochem. 16, 2197 (2012).Google Scholar
30.Sui, L., Zhang, X., Cheng, X., Wang, P., Xu, Y., Gao, S., Zhao, H., and Huo, L.: Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (Benzene, Toluene, and Xylene) and the sensing mechanism. ACS Appl. Mater. Interfaces 9, 1661 (2017).Google Scholar
31.Zhou, L., Yang, L., Yuan, P., Zou, J., Wu, Y., and Yu, C.: α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J. Phys. Chem. C 114, 21868 (2010).Google Scholar
32.Radhakrishnan, R., Reed, C., Oyama, S., Seman, M., Kondo, J., Domen, K., Ohminami, Y., and Asakura, K.: Variability in the structure of supported MoO3 catalysts: studies using Raman and X-ray absorption spectroscopy with ab initio calculations. J. Phys. Chem. B 105, 8519 (2001).Google Scholar
33.Sreedhara, M., Matte, H., Govindaraj, A., and Rao, C.: Synthesis, characterization, and properties of few-layer MoO3. Chemistry 8, 2430 (2013).Google Scholar
34.Balendhran, S., Walia, S., Alsaif, M., Nguyen, E.P., Ou, J.Z., Zhuiykov, S., Sriram, S., Bhaskaran, M., and Kalantar-zadeh, K.: Field effect biosensing platform based on 2D α-MoO3. ACS Nano 7, 9753 (2013).Google Scholar
35.Kumar, S., Kumar, S., Tiwari, S., Srivastava, S., Srivastava, M., Yadav, B.K., Kumar, S., Tran, T.T., Dewan, A.K., and Mulchandani, A.: Biofunctionalized nanostructured zirconia for biomedical application: a smart approach for oral cancer detection. Advanced Science 2, 1500048 (2015).Google Scholar
36.Srivastava, S., Kumar, V., Ali, M.A., Solanki, P.R., Srivastava, A., Sumana, G., Saxena, P.S., Joshi, A.G., and Malhotra, B.: Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5, 3043 (2013).Google Scholar
37.Singh, B.R.: Basic aspects of the technique and applications of infrared spectroscopy of peptides and proteins. In ACS Symposium Series American Chemical Society: Washington, DC, 19992000, p. 2.Google Scholar
38.Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.A.: Introduction to spectroscopy, USA, (Cengage Learning, 2008).Google Scholar
39.Cai, S. and Singh, B.R.: A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43, 2541 (2004).Google Scholar
40.Liu, Y., Liu, Y., Mernaugh, R.L., and Zeng, X.: Single chain fragment variable recombinant antibody functionalized gold nanoparticles for a highly sensitive colorimetric immunoassay. Biosens. Bioelectron. 24, 2853 (2009).Google Scholar
41.Chen, M., Wang, W., and Wu, X.: One-pot green synthesis of water-soluble carbon nanodots with multicolor photoluminescence from polyethylene glycol. J. Mater. Chem. B 2, 3937 (2014).Google Scholar
42.Pavia, D.L.: Introduction to Spectroscopy (Brooks/Cole, 2008).Google Scholar
43.Choi, J.-G. and Thompson, L.: XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143 (1996).Google Scholar
44.Martin, H.J., Schulz, K.H., Bumgardner, J.D., and Walters, K.B.: XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. Langmuir 23, 6645 (2007).Google Scholar
45.Song, Y.-Y., Hildebrand, H., and Schmuki, P.: Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO 2. Surf. Sci. 604, 346 (2010).Google Scholar
46.Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., and Fairley, N.: Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 326, 151 (2015).Google Scholar
47.Kumar, S., Sharma, J.G., Maji, S., and Malhotra, B.D.: A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv. 6, 77037 (2016).Google Scholar
48.Malik, P., Srivastava, M., Verma, R., Kumar, M., Kumar, D., and Singh, J.: Nanostructured SnO 2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. Mater. Sci. Eng. C 58, 432 (2016).Google Scholar
49.Srivastava, S., Ali, M.A., Solanki, P.R., Chavhan, P.M., Pandey, M.K., Mulchandani, A., Srivastava, A., and Malhotra, B.D.: Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection. RSC Adv. 3, 228 (2013).Google Scholar
50.Tabasi, A., Noorbakhsh, A., and Sharifi, E.: Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosensors and Bioelectronics 95, 117123, (2017).Google Scholar
51.Jagadeesan, K.K., Kumar, S., and Sumana, G.: Application of conducting paper for selective detection of troponin. Electrochem. Commun. 20, 71 (2012).Google Scholar
52.Tiwari, S., Gupta, P.K., Bagbi, Y., Sarkar, T., and Solanki, P.R.: L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens. Bioelectron. 89, 1042 (2017).Google Scholar
53.Andersson, K., Areskoug, D., and Hardenborg, E.: Exploring buffer space for molecular interactions. J. Mol. Recognit. 12, 310 (1999).Google Scholar
54.Kumar, S., Sen, A., Kumar, S., Augustine, S., Yadav, B.K., Mishra, S., and Malhotra, B.D.: Polyaniline modified flexible conducting paper for cancer detection. Appl. Phys. Lett. 108, 203702 (2016).Google Scholar
55.Marques, R.C., Viswanathan, S., Nouws, H.P., Delerue-Matos, C., and González-García, M.B.: Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 129, 594 (2014).Google Scholar
56.Gruhl, F.J., Rapp, M., and Länge, K.: Label-free detection of breast cancer marker HER-2/neu with an acoustic biosensor. Procedia Eng. 5, 914 (2010).Google Scholar
57.Arkan, E., Saber, R., Karimi, Z., and Shamsipur, M.: A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal. Chim. Acta 874, 66 (2015).Google Scholar
Supplementary material: File

Augustine et al. supplementary material

Augustine et al. supplementary material 1

Download Augustine et al. supplementary material(File)
File 3.3 MB