Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T20:12:39.899Z Has data issue: false hasContentIssue false

Amine modifications of polypropylene films by gamma radiation to be applied in cell cultures

Published online by Cambridge University Press:  26 September 2019

M. Pérez-Calixto
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Av. Universidad, Ciudad de México04510, Mexico
L. Huerta
Affiliation:
Departamento de materiales de baja dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Ciudad de México04510, Mexico
G. Burillo*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Av. Universidad, Ciudad de México04510, Mexico
*
Address all correspondence to G. Burillo at burillo@nucleares.unam.mx
Get access

Abstract

Development of biomaterials with primary amine surfaces is very important for the study of some cells of the immune systemuch as macrophages. Currently, the modification can be carried out by physical or chemical methods with several disadvantages due to the presence of additives or subproducts in the system. To overcome this problem, modified polypropylene (PP) films were synthesized by gamma radiation. In this work, radiation grafting of acryloyl chloride onto PP has been employed to form an acyl chloride. Then, the radiation-grafted films were reacted with ethylenediamine in several solvents to obtain the different concentration of the primary amine. The surface amine concentration was determined by derivatization with 4-trifluoromethyl benzaldehyde and characterized by x-ray photoelectron spectroscopy (N/C ratios), Fourier transform infrared spectroscopy with attenuated total reflection, contact angle, scanning electron microscopy, atomic force microscopy, and elementary analysis. The stability of the amines was measured up to 90 days, without the occurrence of aging as was found by plasma modification.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Girard-Lauriault, P.L., Truica-Marasescu, F., Petit, A., Wang, H.T., Desjardins, P., Antoniou, J., Mwale, F., and Wertheimer, M.R.: Adhesion of human U937 monocytes to nitrogen-rich organic thin films: novel insights into the mechanism of cellular adhesion. Macromol. Biosci. 9, 911 (2009).CrossRefGoogle ScholarPubMed
2.Lan, M.A., Gersbach, C.A., Michael, K.E., Keselowsky, B.G., and García, A.J.: Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26, 4523 (2005).CrossRefGoogle ScholarPubMed
3.Curran, J.M., Chen, R., and Hunt, J.A.: Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26, 7057 (2005).CrossRefGoogle ScholarPubMed
4.Curran, J.M., Chen, R., and Hunt, J.A.: The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27, 4783 (2006).CrossRefGoogle ScholarPubMed
5.Bullett, N.A., Bullett, D.P., Truica-Marasescu, F.E., Lerouge, S., Mwale, F., and Wertheimer, M.R.: Polymer surface micropatterning by plasma and VUV-photochemical modification for controlled cell culture. Appl. Surf. Sci. 235, 395 (2004).CrossRefGoogle Scholar
6.Girard-Lauriault, P.L., Mwale, F., Iordanova, M., Demers, C., Desjardins, P., and Wertheimer, M.R.: Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process. Polym. 2, 263 (2005).CrossRefGoogle Scholar
7.Štrbková, L., Manakhov, A., Zajíčková, L., Stoica, A., Veselý, P., and Chmelík, R.: The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 295, 70 (2016).CrossRefGoogle Scholar
8.Hamerli, P., Weigel, T., Groth, T., and Paul, D.: Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 24, 3989 (2003).CrossRefGoogle ScholarPubMed
9.Sridharan, R., Cameron, A.R., Kelly, D.J., Kearney, C.J., and O'Brien, F.J.: Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18, 313 (2015).CrossRefGoogle Scholar
10.Ruiz, J.C., St-Georges-Robillard, A., Thérésy, C., Lerouge, S., and Wertheimer, M.R.: Fabrication and characterisation of amine-rich organic thin films: focus on stability. Plasma Process. Polym. 7, 737 (2010).CrossRefGoogle Scholar
11.Terlingen, J.G., Brenneisen, L.M., Super, H.T., Pijpers, A.P., Hoffman, A.S., and Feijen, J.: Introduction of amine groups on poly(ethylene) by plasma immobilization of a preadsorbed layer of decylamine hydrochloride. J. Biomater. Sci. Polym. Ed. 4, 165 (1993).CrossRefGoogle ScholarPubMed
12.Klages, C.P., Khosravi, Z., and Hinze, A.: Some remarks on chemical derivatization of polymer surfaces after exposure to nitrogen-containing plasmas. Plasma Process. Polym. 10, 307 (2013).CrossRefGoogle Scholar
13.Pérez-Calixto, M., González-Pérez, G., Dionisio, N., Bucio, E., Burillo, G., and Garciá-Uriostegui, L.: Surface functionalization of polypropylene and polyethylene films with allylamine by γ radiation. MRS Commun. 9, 264 (2019).CrossRefGoogle Scholar
14.Rodríguez-alba, E., Huerta, L., Ortega, A., and Burillo, G.: Surface modification of polypropylene with primary amines by acrylamide radiation grafting and Hofmann's transposition reaction. ChemistrySelect 4, 7759 (2019).CrossRefGoogle Scholar
15.Girard-Lauriault, P.L., Dietrich, P., Gross, T., and Unger, W.E.S.: Is quantitative chemical derivatization XPS of plasma deposited organic coatings a valid analytical procedure? Surf. Interface Anal. 44, 1135 (2012).CrossRefGoogle Scholar
16.Yegen, E., Zimmermann, U., Unger, W.E.S., and Braun, T.: C-F bond cleavage during derivatization reactions of amino groups with TFBA and PFB at plasma-processed organic surfaces? Plasma Process. Polym. 6, 11 (2009).CrossRefGoogle Scholar
17.Bucio, E., Burillo, G., Carreón-Castro, M.D.P., and Ogawa, T.: Functionalization of polypropylene film by radiation grafting of acryloyl chloride and subsequent esterification with Disperse Red 1. J. Appl. Polym. Sci. 93, 172 (2004).CrossRefGoogle Scholar
18.Aliev, R., Del Pilar Carreón-Castro, M., Rivera, M., and Burillo, G.: Immobilization of disperse red 1 on to polydiethyleneglycol-bis-allylcarbonate (CR-39) radiation grafted with poly(acryloyl chloride). Polym. Bull. 52, 73 (2004).CrossRefGoogle Scholar
19.Martínez-Cocoletzi, A., Ruiz, J.C., Kasparek, E., Ortega, A., Garcia-Uriostegui, L., Girard-Lauriault, P.L., and Burillo, G.: Primary-amine surface functionalization of polytetrafluoroethylene films by radiation grafting of aminated polyacryloyl chloride. Radiat. Phys. Chem. 149, 65 (2018).CrossRefGoogle Scholar
20.Girard-Lauriault, P.L., Dietrich, P.M., Gross, T., Wirth, T., and Unger, W.E.S.: Chemical characterization of the long-term ageing of nitrogen-rich plasma polymer films under various ambient conditions. Plasma Process. Polym. 10, 388 (2013).CrossRefGoogle Scholar
21.Stevens, M.P.: Polymer Chemistry an Introduction, 3rd ed. (OXFORD University Press, New York, 1998).Google Scholar
22.Engler, A.J., Richert, L., Wong, J.Y., Picart, C., and Discher, D.E.: Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion. Surf. Sci. 570, 142 (2004).CrossRefGoogle Scholar
23.Beamson, G. and Briggs, D.: High Resolution XPS of Organic Polymers: The Scientia. The Scienta ESCA300 Database (Wiley & Son, Chichester, UK, 1992), pp. 56.Google Scholar
24.Akishev, Y., Grushin, M., Dyatko, N., Kochetov, I., Napartovich, A., Trushkin, N., Minh Duc, T., and Descours, S.: Studies on cold plasma-polymer surface interaction by example of PP- and PET-films. J. Phys. D: Appl. Phys. 41 (2008).CrossRefGoogle Scholar
25.Morent, R., De Geyter, N., Leys, C., Gengembre, L., and Payen, E.: Comparison between XPS- And FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 40, 597 (2008).CrossRefGoogle Scholar
26.Dorai, R. and Kushner, M.J.: A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D: Appl. Phys. 36, 666 (2003).CrossRefGoogle Scholar
27.Couturaud, B., Bondia, A.M., Faye, C., Garrelly, L., Mas, A., and Robin, J.J.: Grafting of poly-L-lysine dendrigrafts onto polypropylene surface using plasma activation for ATP immobilization - nanomaterial for potential applications in biotechnology. J. Colloid Interface Sci. 408, 242 (2013).CrossRefGoogle ScholarPubMed
28.Siow, K.S., Britcher, L., Kumar, S., and Griesser, H.J.: Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review. Plasma Process. Polym. 3, 392 (2006).CrossRefGoogle Scholar
Supplementary material: File

Pérez-Calixto et al. supplementary material

Pérez-Calixto et al. supplementary material

Download Pérez-Calixto et al. supplementary material(File)
File 14.3 KB