Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T22:31:48.591Z Has data issue: false hasContentIssue false

Achieving antimicrobial activity through poly(N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads

Published online by Cambridge University Press:  02 November 2017

F. López-Saucedo*
Affiliation:
Department of Radiation Chemistry and Radiochemistry, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
G.G. Flores-Rojas
Affiliation:
Department of Radiation Chemistry and Radiochemistry, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
E. Bucio*
Affiliation:
Department of Radiation Chemistry and Radiochemistry, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
C. Alvarez-Lorenzo
Affiliation:
Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, España
A. Concheiro
Affiliation:
Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, España
O. González-Antonio
Affiliation:
Department of Organic Chemistry, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX 04510, México
*
Address all correspondence to F. López-Saucedo and E. Bucio at felipelopezsaucedo@gmail.mx; ebucio@nucleares.unam.mx
Address all correspondence to F. López-Saucedo and E. Bucio at felipelopezsaucedo@gmail.mx; ebucio@nucleares.unam.mx
Get access

Abstract

Harnessing the properties of imidazolium species, antimicrobial activity against Gram-negative and Gram-positive bacteria was attained by binary-grafting 2-hydroxyethyl methacrylate (HEMA) or N-isopropylacrylamide, followed by N-vinylimidazole onto polypropylene (PP) monofilaments (sutures) using 60Co γ-rays. Ulterior functionalization with methyl iodide was carried out to endow brushes with antimicrobial activity on the PP surface. The PP-grafted sutures were characterized by means of Fourier-transform infrared spectroscopy attenuated total reflection, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, and regarding the mechanical properties and the responsiveness to pH and temperature. Tests were performed on Escherichia coli and Staphylococcus aureus achieving large inhibition zones.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cao, P.-F., Mangadlao, J.D., and Advincula, R.C.: Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym. Rev. 55, 706 (2015).CrossRefGoogle Scholar
2. Guragain, S., Bastakoti, B.P., Malgras, V., Nakashima, K., and Yamauchi, Y.: Multi-stimuli-responsive polymeric materials. Chem. A, Eur. J. 21, 13164 (2015).CrossRefGoogle ScholarPubMed
3. Cao, Z.Q. and Wang, G.J.: Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem. Rec. 16, 1398 (2016).Google Scholar
4. Akimoto, J., Nakayama, M., Sakai, K., Yamato, M., and Okano, T.: Synthesis of terminal-functionalized thermoresponsive diblock copolymers using biodegradable macro-RAFT agents. Polym. J. 45, 233 (2012).Google Scholar
5. Sedláček, O., Černoch, P., Kučka, J., Konefal, R., Štěpánek, P., Vetrík, M., Lodge, T.P., and Hrubý, M.: Thermoresponsive polymers for nuclear medicine: which polymer is the best? Langmuir 32, 6115 (2016).CrossRefGoogle ScholarPubMed
6. Liu, S., Maheshwari, R., and Kiick, K.L.: Polymer-based therapeutics. Macromolecules 42, 3 (2009).Google Scholar
7. Alvarez-Lorenzo, C. and Concheiro, A.: Smart drug delivery systems: from fundamentals to the clinic. Chem. Commun. 50, 7743 (2014).CrossRefGoogle ScholarPubMed
8. Feng, C., Li, Y., Yang, D., and Hu, J.: Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev. 40, 1282 (2011).CrossRefGoogle ScholarPubMed
9. Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., and Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010).CrossRefGoogle ScholarPubMed
10. Alvarez-Lorenzo, C., Bucio, E., Burillo, G., and Concheiro, A.: Medical devices modified at the surface by g-ray grafting for drug loading and delivery. Expert Opin. Drug Deliv. 7, 173 (2010).CrossRefGoogle Scholar
11. Decker, C.: The use of UV irradiation in polymerization. Polym. Int. 45, 133 (1998).Google Scholar
12. Minko, S.: Chapter 93 Grafting on solid surfaces: “grafting to” and “grafting from” methods. In Polymer Surfaces and Interfaces: Characterization, Modification and Applications, edited by Stamm, M. (Springer, Berlin, 2008), p. 215.CrossRefGoogle Scholar
13. Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurf, Biotribol. 1, 161 (2015).Google Scholar
14. Caner, H., Yilmaz, E., and Yilmaz, O.: Synthesis, characterization and antibacterial activity of poly(N-vinylimidazole) grafted chitosan. Carbohydr. Polym. 69, 318 (2007).CrossRefGoogle Scholar
15. López-Saucedo, F., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Radiat. Phys. Chem. 132, 1 (2017).Google Scholar
16. Gupta, B., Anjum, N., Gulrez, S.K.H., and Singh, H.: Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J. Appl. Polym. Sci. 103, 3534 (2007).Google Scholar
17. Modjinou, T., Rodriguez-Tobias, H., Morales, G., Versace, D.-L., Langlois, V., Grande, D., and Renard, E.: UV-cured thiol–ene eugenol/ZnO composite materials with antibacterial properties. RSC Adv. 6, 88135 (2016).Google Scholar
18. Rodríguez-Tobías, H., Morales, G., Ledezma, A., Romero, J., Saldívar, R., Langlois, V., Renard, E., and Grande, D.: Electrospinning and electrospraying techniques for designing novel antibacterial poly(3-hydroxybutyrate)/zinc oxide nanofibrous composites. J. Mater. Sci. 51, 8593 (2016).Google Scholar
19. Humphreys, B.A., Willott, J.D., Murdoch, T.J., Webber, G.B., and Wanless, E.J.: Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes. Phys. Chem. Chem. Phys. 18, 6037 (2016).CrossRefGoogle ScholarPubMed
20. Lei, C., Kee, L.Y., Yanawut, M., Soo, T.K., Sanghiran, L.V., and Abd, R.N.: Synthesis, characterization, and theoretical study of an acrylamide-based magnetic molecularly imprinted polymer for the recognition of sulfonamide drugs. e-Polymers 15, 141 (2015).Google Scholar
21. Costache, A.D., Ghosh, J., Knight, D.D., and Kohn, J.: Computational methods for the development of polymeric biomaterials. Adv. Eng. Mater. 12, B3 (2010).CrossRefGoogle Scholar
22. Wojnecki, C. and Green, S.: A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys. Med. Biol. 46, 1399 (2001).Google Scholar
23. Mavroudakis, E., Cuccato, D., and Moscatelli, D.: On the use of quantum chemistry for the determination of propagation, copolymerization, and secondary reaction kinetics in free radical polymerization. Polymers 7, 1789 (2015).Google Scholar
24. Anisimov, Y.A., Danilenko, M.A., and Anisimov, Y.N.: Copolymerization of modified oligoesteracrylates with oligomeric butadiene rubber. Russ. J. Appl. Chem. 86, 289 (2013).Google Scholar
25. Morales-Wiemer, E.A., Macossay, J., and Bucio, E.: Radiation grafting of N,N’-dimethylacrylamide and 2-hydroxyethylmethacrylate onto polypropylene films by one step method. Radiat. Phys. Chem. 84, 166 (2013).Google Scholar
26. Marestoni, L.D., Wong, A., Feliciano, G.T., Marchi, M.R.R., Tarley, C.R.T., and Sotomayor, M.D.P.T.: Semi-empirical quantum chemistry method for pre-polymerization rational design of ciprofloxacin imprinted polymer and adsorption studies. J. Braz. Chem. Soc. 27, 109 (2016).Google Scholar
27. De Sterck, B., Vaneerdeweg, R., Du Prez, F., Waroquier, M., and Van Speybroeck, V.: Solvent effects on free radical polymerization reactions: the influence of water on the propagation rate of acrylamide and methacrylamide. Macromolecules 43, 827 (2010).Google Scholar
28. Caimmi, P.P., Sabbatini, M., Fusaro, L., Borrone, A., and Cannas, M.: A study of the mechanical properties of ePTFE suture used as artificial mitral chordate. J. Card. Surg. 31, 498 (2016).Google Scholar
29. Oh, K.S., Han, S.K., Choi, Y.W., Lee, J.H., Lee, J.Y., and Yuk, S.H.: Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system, Biomaterials. Biomaterials 25, 2393 (2004).Google Scholar
30. Horta, A., Molina, M.J., Gómez-Antón, M.R., and Piérola, I.F.: The pH inside a swollen polyelectrolyte gel: poly(N-vinylimidazole). J. Phys. Chem. B 112, 10123 (2008).Google Scholar
31. Meléndez-Ortiz, H.I., Alvarez-Lorenzo, C., Concheiro, A., Jiménez-Páez, V.M., and Bucio, E.: Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiat. Phys. Chem. 119, 37 (2016).Google Scholar
Supplementary material: File

López-Saucedo et al supplementary material

López-Saucedo et al supplementary material 1

Download López-Saucedo et al supplementary material(File)
File 277.5 KB