Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-18T05:25:44.209Z Has data issue: false hasContentIssue false

Versatile applications of three-dimensional objects fabricated by two-photon-initiated polymerization

Published online by Cambridge University Press:  14 November 2018

Cheol Woo Ha
Affiliation:
School of Mechanical Engineering and Aerospace System, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
Prem Prabhakaran
Affiliation:
Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 306-791, Korea
Kwang-Sup Lee*
Affiliation:
Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 306-791, Korea
*
Address all correspondence to Kwang-Sup Lee at kslee@hnu.kr
Get access

Abstract

In this topical review of two-photon stereolithography (TPS), we discuss novel materials and demonstrate applications of this technology. Two-photon-initiated chemical processes are used to fabricate arbitrary three-dimensional structures in TPS. In the first part of this article, the development of novel photoactive materials to fabricate pure inorganic or organic–inorganic hybrid microstructures is discussed. The second part discusses the fabrication of functional microstructures for highly specific applications to demonstrate the importance of TPS in different fields of science.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gratson, G.M., García-Santamaría, F., Lousse, V., Xu, M., Fan, S., Lewis, J.A., and Braun, P.V.: Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461 (2006).Google Scholar
2.Park, M., Harrison, C., Chaikin, P.M., Register, R.A., and Adamson, D.H.: Block copolymer lithography: periodic arrays of~ 1011 holes in 1 square centimeter. Science 276, 1401 (1997).10.1126/science.276.5317.1401Google Scholar
3.Fleming, J., Lin, S., El-Kady, I., Biswas, R., and Ho, K.: All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52 (2002).10.1038/417052aGoogle Scholar
4.Tolfree, D.: Microfabrication using synchrotron radiation. Rep. Prog. Phys. 61, 313 (1998).Google Scholar
5.Divliansky, I., Mayer, T.S., Holliday, K.S., and Crespi, V.H.: Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Appl. Phys. Lett. 82, 1667 (2003).Google Scholar
6.Reyntjens, S. and Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287 (2001).10.1088/0960-1317/11/4/301Google Scholar
7.Bertsch, A., Lorenz, H., and Renaud, P.: Combining microstereolithography and thick resist UV lithography for 3D microfabrication, in Micro Electro Mechanical Systems, Proceedings MEMS 98 (1998).Google Scholar
8.Lee, S.J., Kang, H.W., Park, J.K., Rhie, J.W., Hahn, S.K., and Cho, D.W.: Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed. Microdevices 10, 233 (2008).10.1007/s10544-007-9129-4Google Scholar
9.Prabhakaran, P.: An Introduction to Direct Laser Writing (DLW), Direct Laser Writing (2018). Available at: http://l3dw.com/ (accessed 30 May 2018).Google Scholar
10.Lee, K.-S., Kim, R.H., Yang, D.Y., and Park, S.H.: Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631 (2008).10.1016/j.progpolymsci.2008.01.001Google Scholar
11.Tsutsumi, N., Nagata, K., and Sakai, W.: Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth. Appl. Phys. A: Mater. Sci. Process. 103, 421 (2011).Google Scholar
12.Zhang, Y.L., Chen, Q.D., Xia, H., and Sun, H.B.: Designable 3D nanofabrication by femtosecond laser direct writing. Nano. Today. 5, 435 (2010).Google Scholar
13.Yang, D.Y., Lim, T.W., Son, Y., Kong, H.J., Lee, K.-S., Kim, D.P., and Park, S.H.: Additive process using femto-second laser for manufacturing three-dimensional nano/micro-structures. Int. J. Prec. Eng. Manuf. 8, 63 (2007).Google Scholar
14.Farrer, R.A., LaFratta, C.N., Li, L., Praino, J., Naughton, M.J., Saleh, B.E., Teich, M.C., and Fourkas, J.T.: Selective functionalization of 3-D polymer microstructures. J. Am. Chem. Soc. 128, 1796 (2006).Google Scholar
15.Lai, N.D., Liang, W.P., Lin, J.H., Hsu, C.C., and Lin, C.H.: Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605 (2005).Google Scholar
16.Guo, R., Li, Z., Jiang, Z., Yuan, D., Huang, W., and Xia, A.: Log-pile photonic crystal fabricated by two-photon photopolymerization. J. Opt. A: Pure Appl. Opt. 7, 396 (2005).Google Scholar
17.LaFratta, C.N., Baldacchini, T., Farrer, R.A., Fourkas, J.T., Teich, M.C., Saleh, B.E., and Naughton, M.J.: Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs. J. Phys. Chem. B 108, 11256 (2004).Google Scholar
18.Kodama, H.: Automatic method for fabricating a three dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770 (1981).Google Scholar
19.Ikuta, K. and Hirowatari, K.: Real three-dimensional micro-fabrication using stereo lithography and metal molding. Micro Electro Mechanical Systems, 1993, MEMS'93, Proceedings’ An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems’. IEEE, 42 (1993).Google Scholar
20.Maruo, S., Nakamura, O., and Kawata, S.: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997).Google Scholar
21.Maruo, S. and Ikuta, K.: Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens. Actuators, A 100, 70 (2002).Google Scholar
22.Park, S.H., Lee, S.H., Yang, D.Y., Kong, H.J., and Lee, K.-S.: Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Appl. Phys. Lett. 87, 154108 (2005).Google Scholar
23.Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C.M., and Greer, J.R.: Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).Google Scholar
24.Frenzel, T., Kadic, M., and Wegener, M.: Three-dimensional mechanical metamaterials with a twist. Science 358, 1072 (2017).Google Scholar
25.Bückmann, T., Thiel, M., Kadic, M., Schittny, R., and Wegener, M.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).Google Scholar
26.Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., and Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112, 11502 (2015).10.1073/pnas.1509120112Google Scholar
27.Malinauskas, M., Gilbergs, H., Žukauskas, A., Purlys, V., Paipulas, D., and Gadonas, R.: A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. J. Opt. 12, 035204 (2010).Google Scholar
28.Guo, R., Xiao, S., Zhai, X., Li, J., Xia, A., and Huang, W.: Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express 14, 810 (2006).Google Scholar
29.Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B.N., Houbertz, R., Domann, G., Schulz, J., Cronauer, C., Frhlich, L., and Popall, M.: Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics. Opt. Lett. 28, 301 (2003).10.1364/OL.28.000301Google Scholar
30.Weiß, T., Schade, R., Laube, T., Berg, A., Hildebrand, G., Wyrwa, R., Schnabelrauch, M., and Liefeith, K.: Two photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13, B264 (2011).Google Scholar
31.Baldacchini, T., Nuñez, V., LaFratta, C.N., Grech, J.S., Vullev, V.I., and Zadoyan, R.: Microfabrication of three-dimensional filters for liposome extrusion. In Laser 3D Manufacturing II, Proc. SPIE 9353, 93530W (2015).Google Scholar
32.Ha, C.W., Prabhakaran, P., Son, Y., Lee, K.-S., and Yang, D.Y.: Effective direct writing of hierarchical 3D polymer micromeshes by continuous out-of-plane longitudinal scanning. Macromol. Res. 25, 1129 (2017).Google Scholar
33.Yang, H., Deschatelets, P., Brittain, S.T., and Whitesides, G.M.: Fabrication of high performance ceramic microstructures from a polymeric precursor using soft lithography. Adv. Mater. 13, 54 (2001).Google Scholar
34.Liew, L.A., Liu, Y., Luo, R., Cross, T., An, L., Bright, V.M., Dunn, M.L., Daily, J.W., and Raj, R.: Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators, A 95, 120 (2002).Google Scholar
35.Provin, C., Monneret, S., Le Gall, H., and Corbel, S.: Three dimensional ceramic microcomponents made using microstereolithography. Adv. Mater. 15, 994 (2003).Google Scholar
36.Lim, T.W., Son, Y., Yang, D.Y., Pham, T.A., Kim, D.P., Yang, B.I., Lee, K.-S., and Park, S.H.: Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders. Int. J. Appl. Ceram. Technol. 5, 258 (2008).Google Scholar
37.Pham, T.A., Kim, D.P., Lim, T.W., Park, S.H., Yang, D.Y., and Lee, K.-S.: Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235 (2006).10.1002/adfm.200600009Google Scholar
38.Steckel, J.S., Snee, P., Sullivan, S.C., Zimmer, J.P., Halpert, J.E., Anikeeva, P., Kim, L.A., Bulovic, V., and Bawendi, M.G.: Color-saturated green emitting QD LEDs. Angew. Chem. Int. Ed. 45, 5796 (2006).10.1002/anie.200600317Google Scholar
39.Cho, N., Roy Choudhury, K., Thapa, R.B., Sahoo, Y., Ohulchanskyy, T., Cartwright, A.N., Lee, K.-S., and Prasad, P.N.: Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon-nanotube conjugates in a polymeric nanocomposite. Adv. Mater. 19, 232 (2007).Google Scholar
40.Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).Google Scholar
41.Park, J.J., Prabhakaran, P., Jang, K.K., Lee, Y., Lee, J., Lee, K., Hur, J., Kim, J.M., Cho, N., Son, Y., Yang, D.Y., and Lee, K.-S.: Photopatternable quantum dots forming quasi-ordered arrays. Nano Lett. 10, 2310 (2010).Google Scholar
42.Smith, D.R., Pendry, J.B., and Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788 (2004).Google Scholar
43.Jang, K.K., Prabhakaran, P., Chandran, D., Park, J.J., and Lee, K.-S.: Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices. Opt. Mater. Express 2, 519 (2012).10.1364/OME.2.000519Google Scholar
44.Krini, R., Ha, C.W., Prabhakaran, P., Mard, H.E., Yang, D.Y., Zentel, R., and Lee, K.-S.: Photosensitive functionalized surface modified quantum dots for polymeric structures via two-photon-initiated polymerization technique. Macromol. Rapid Commun. 36, 1108 (2015).10.1002/marc.201500045Google Scholar
45.Park, S.K., Teng, X., Jung, J., Prabhakaran, P., Ha, C.W., and Lee, K.-S.: Photopatternable cadmium-free quantum dots with ene-functionalization. Opt. Mater. Express 7, 2440 (2017).10.1364/OME.7.002440Google Scholar
46.Ko, S.H., Pan, H., Grigoropoulos, C.P., Luscombe, C.K., Fréchet, J.M., and Poulikakos, D.: Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90, 141103 (2007).Google Scholar
47.Chung, J., Ko, S., Bieri, N.R., Grigoropoulos, C.P., and Poulikakos, D.: Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl. Phys. Lett. 84, 801 (2004).10.1063/1.1644907Google Scholar
48.Chung, J., Bieri, N., Ko, S., Grigoropoulos, C., and Poulikakos, D.: In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl. Phys. A 79, 1259 (2004).Google Scholar
49.Wang, H., Liu, S., Zhang, Y.L., Wang, J.N., Wang, L., Xia, H., Chen, Q.D., Ding, H., and Sun, H.B.: Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Sci. Technol. Adv. Mater. 16, 024805 (2015).Google Scholar
50.Wang, H., Zhang, Y.L., Xia, H., Chen, Q.D., Lee, K.S., and Sun, H.B.: Photodynamic assembly of nanoparticles towards designable patterning. Nanoscale Horiz. 1, 201, (2016).Google Scholar
51.Stellacci, F., Bauer, C.A., Meyer-Friedrichsen, T., Wenseleers, W., Alain, V., Kuebler, S.M., Pond, S.J.K., Zhang, Y., Marder, S.R., and Perry, J.W.: Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14, 194 (2002).10.1002/1521-4095(20020205)14:3<194::AID-ADMA194>3.0.CO;2-W3.0.CO;2-W>Google Scholar
52.Vitrant, G., Bosson, J., Tosa, N., Rosenzveig, T., Stephan, O., Astilean, S., and Baldeck, P.L.: Observation of optical dispersion effects in metallic nanostructures fabricated by laser illumination of an organic polymer matrix doped with metallic salts, SPIE2007 p. 64700O (2007).10.1117/12.705881Google Scholar
53.Tosa, N., Bosson, J., Pierre, M., Rambaud, C., Bouriau, M., Vitrant, G., Stéphan, O., Astilean, S., and Baldeck, P.L.: Optical properties of metallic nanostructures fabricated by two-photon induced photoreduction. In Nanophotonics, Proc. SPIE. 6195, 619501 (2015).Google Scholar
54.Cao, Y.Y., Takeyasu, N., Tanaka, T., Duan, X.M., and Kawata, S.: 3D metallic nanostructure fabrication by surfactant assisted multiphoton induced reduction. Small 5, 1144 (2009).Google Scholar
55.Ishikawa, A., Tanaka, T., and Kawata, S.: Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl. Phys. Lett. 89, 113102 (2006).Google Scholar
56.Tanaka, T., Ishikawa, A., and Kawata, S.: Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 88, 081107 (2006).Google Scholar
57.Prabhakaran, P., Jang, K.K., Son, Y., Yang, D.Y., and Lee, K.-S.: Fabrication of microstructures containing high refractive index materials by two-photon lithography. Mol. Cryst. Liq. Cryst. 578, 4 (2013).Google Scholar
58.Wenseleers, W., Stellacci, F., Meyer-Friedrichsen, T., Mangel, T., Bauer, C.A., Pond, S.J., Marder, S.R., and Perry, J.W.: Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J. Phys. Chem. B 106, 6853 (2002).Google Scholar
59.Yuan, H., Khoury, C.G., Hwang, H., Wilson, C.M., Grant, G.A., and Vo-Dinh, T.: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).Google Scholar
60.Son, Y., Yeo, J., Moon, H., Lim, T.W., Hong, S., Nam, K.H., Yoo, S., Grigoropoulos, C.P., Yang, D.Y., and Ko, S.H.: Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176 (2011).Google Scholar
61.Son, Y., Yeo, J., Ha, C.W., Lee, J., Hong, S., Nam, K.H., Yang, D.Y., and Ko, S.H.: Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning. Thermochim. Acta 542, 52 (2012).Google Scholar
62.Jeon, S., Malyarchuk, V., White, J.O., and Rogers, J.A.: Optically fabricated three dimensional nanofluidic mixers for microfluidic devices. Nano Lett. 5, 1351 (2005).Google Scholar
63.Park, S.G., Lee, S.K., Moon, J.H., and Yang, S.M.: Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab Chip 9, 3144 (2009).Google Scholar
64.Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezić, I., Stone, H.A., and Whitesides, G.M.: Chaotic mixer for microchannels. Science 295, 647 (2002).Google Scholar
65.Schönfeld, F., Hessel, V., and Hofmann, C.: An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing. Lab Chip 4, 65 (2004).Google Scholar
66.Kim, D.S., Lee, S.H., Kwon, T.H., and Ahn, C.H.: A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5, 739 (2005).Google Scholar
67.Xu, B.B., Zhang, Y.L., Xia, H., Dong, W.F., Ding, H., and Sun, H.B.: Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 13, 1677 (2013).Google Scholar
68.Lim, T.W., Son, Y., Jeong, Y.J., Yang, D.Y., Kong, H.J., Lee, K.-S., and Kim, D.P.: Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100 (2011).Google Scholar
69.Wautelet, M.: Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys. 22, 601 (2001).Google Scholar
70.Cugat, O., Delamare, J., and Reyne, G.: Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607 (2003).Google Scholar
71.Trimmer, W.S.: Microrobots and micromechanical systems. Sens. Actuators 19, 267 (1989).Google Scholar
72.Hongzhe, Z. and Shusheng, B.: Accuracy characteristics of the generalized cross-spring pivot. Mech. Mach. Theory 45, 1434 (2010).Google Scholar
73.Zhao, H. and Bi, S.: Stiffness and stress characteristics of the generalized cross-spring pivot. Mech. Mach. Theory 45, 378 (2010).Google Scholar
74.Ha, C.W. and Yang, D.Y.: Rotational elastic micro joint based on helix-augmented cross-spring design for large angular movement. Opt. Express 22, 20789 (2014).Google Scholar
75.Ha, C.W. and Yang, D.Y.: Elastic translational joint for large translation of motion using spiral structures. J. Intell. Mechatron. Rob., 3, 48 (2013).Google Scholar
76.Jung, B.J., Kong, H.J., Cho, Y.H., Lee, K.S., Park, C.H., Yang, D.Y., and Lee, K.-S.: Fabrication of sharp-needled conical polymer tip on the cross-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy. Opt. Commun. 286, 197 (2013).Google Scholar
77.Liberale, C., Cojoc, G., Candeloro, P., Das, G., Gentile, F., De Angelis, F., and Di Fabrizio, E.: Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol. Lett. 22, 474 (2010).Google Scholar
78.Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., and Wegener, M.: Tailored 3D mechanical metamaterials made by dip in direct laser writing optical lithography. Adv. Mater. 24, 2710 (2012).Google Scholar
79.Kuo, C.T., Chiang, C.L., Huang, R.Y.J., Lee, H., and Wo, A.M.: Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics. NPG Asia Mater. 4, e27 (2012).Google Scholar
80.Debnath, J. and Brugge, J.S.: Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675 (2005).Google Scholar
81.An, J.H., Choi, D.K., Lee, K.J., and Choi, J.W.: Surface-enhanced Raman spectroscopy detection of dopamine by DNA targeting amplification assay in Parkisons's model. Biosens. Bioelectron. 67, 739 (2015).Google Scholar
82.Gottesman, M.M.: Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615 (2002).Google Scholar
83.Lee, K.J., An, J.H., Shin, J.S., Ha, C.W., Son, Y., Seok, J., and Lee, K.-S.: Evaluation of anticancer drug in a polymer 3D cell chip. Opt. Mater. Express 7, 2752 (2017).Google Scholar
84.Lee, K.J., Hee An, J., Ha, C.W., Son, Y., Yang, D.Y., Jung, J., Lee, K.-S., and Choi, J.W.: 3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects. J. Biomed. Nanotechnol. 12, 2125 (2016).Google Scholar
85.Shaw, L.A., Chizari, S., Shusteff, M., Naghsh-Nilchi, H., Di Carlo, D., and Hopkins, J.B.: Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express 26, 13543 (2018).Google Scholar
86.Laza, S.C., Polo, M., Neves, A.A., Cingolani, R., Camposeo, A., and Pisignano, D.: Two-photon continuous flow lithography. Adv. Mater. 24, 1304 (2012).Google Scholar
87.Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., and Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133 (2016).Google Scholar
88.Wang, F.C., Wang, K.A., Chung, T.T., and Yen, J.Y.: Fabrication of large-scale micro-structures by two-photon polymerization with a long-stroke precision stage. Adv. Mech. Eng. 9, 1 (2017).Google Scholar
89.Jonušauskas, L., Juodkazis, S., and Malinauskas, M.: Optical 3D printing: bridging the gaps in the mesoscale. J. Opt. 20, 053001 (2018).Google Scholar
90.Jonušauskas, L., Gailevičius, D., Baravykas, T., Juodkazis, S., and Malinauskas, M.: Mesoscale ultrafast laser 3D lithography: throughput in voxels-per-second. Proceedings of 3D Printed Optics and Additive Photonic Manufacturing 106750D (2018).Google Scholar
91.Ricci, D., Nava, M.M., Zandrini, T., Cerullo, G., Raimondi, M.T., and Osellame, R.: Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017).Google Scholar
92.Chu, W., Tan, Y., Wang, P., Xu, J., Li, W., Qi, J., and Cheng, Y.: Centimeter-scale superfine three-dimensional printing with femtosecond laser two-photon polymerization. arXiv preprint arXiv:1802.01650 (2017).Google Scholar
93.Stender, B., Mantei, W., and Houbertz, R.: From lab to fab—high precision 3D printing: towards high throughputs and industrial scalability. Laser Tech. J. 14, 20 (2017).Google Scholar
94.Liddle, J.A. and Gallatin, G.M.: Lithography, metrology and nanomanufacturing. Nanoscale 3, 2679 (2011).Google Scholar
95.LaFratta, C.N. and Baldacchini, T.: Two-photon polymerization metrology: characterization methods of mechanisms and microstructures. Micromachines (Basel) 8, 101 (2017).Google Scholar