Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T10:27:37.173Z Has data issue: false hasContentIssue false

TiO2 hollow nanospheres functionalized with folic acid and ZnPc for targeted photodynamic therapy in glioblastoma cancer

Published online by Cambridge University Press:  14 November 2019

Minerva Uribe-Robles
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA92521, USA College of Engineering Center for Environmental Research and Technology, University of California, Riverside, CA92507, USA
Emma Ortiz-Islas
Affiliation:
Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery, Insurgentes sur 3877, Tlalpan, México City14269, Mexico
Ekaterina Rodriguez-Perez
Affiliation:
Neuroimmunoendocrinology Laboratory, National Institute of Neurology and Neurosurgery, Insurgentes sur 3877, Tlalpan, México City14269, Mexico
Taehoon Lim
Affiliation:
College of Engineering Center for Environmental Research and Technology, University of California, Riverside, CA92507, USA
Alfredo A. Martinez-Morales*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA92521, USA College of Engineering Center for Environmental Research and Technology, University of California, Riverside, CA92507, USA
*
Address all correspondence to Alfredo A. Martinez-Morales at alfmart@ece.ucr.edu
Get access

Abstract

Glioblastoma (GBM) is one of the most aggressive types of cancer which currently does not have a cure. Its invasive nature and heterogeneity makes its complete surgical removal impossible. Hence, a targeted treatment is critically needed to effectively eradicate this cancer. In this work, the authors report the synthesis of hollow TiO2 nanospheres (HTiO2NS) and their functionalization with folic acid (FA) and zinc (II) tetranitrophthalocyanine (ZnPc) to achieve cell selectivity and light absorption in the visible range. In vitro cytotoxicity of the functionalized HTiO2NS against M059K cell line (Human GBM cancer cells) was tested. In vitro generation of reactive oxygen species by HTiO2NS–FA–ZnPc nanostructures under UV irradiation was detected by fluorescence probing. To identify HTiO2NS–FA–ZnPc cell localization, the nanoparticles were labeled with fluorescein isothiocyanate dye and visualized by fluorescence microscopy. Results illustrate that HTiO2NS–FA–ZnPc nanostructures have the potential to be used for targeted photodynamic therapy for the treatment of GBM cancer.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wen, P.Y. and Kesari, S.: Malignant gliomas in adults. N. Engl. J. Med. 359, 492507 (2008).CrossRefGoogle ScholarPubMed
2.Dolmans, D.E., Fukumura, D., and Jain, R.K.: Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380387 (2003).CrossRefGoogle ScholarPubMed
3.Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q.: Photodynamic therapy. J. Natl. Cancer Inst. 90, 889905 (1998).CrossRefGoogle ScholarPubMed
4.Dąbrowski, J.M. and Arnaut, L.G.: Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem. Photobiol. Sci. 14, 17651780 (2015).CrossRefGoogle ScholarPubMed
5.Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 52595275 (2007).CrossRefGoogle Scholar
6.Chawengkijwanich, C. and Hayata, Y.: Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 123, 288292 (2008).CrossRefGoogle ScholarPubMed
7.Yin, Z.F., Wu, L., Yang, H.G., and Su, Y.H.: Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15, 48444858 (2013).CrossRefGoogle ScholarPubMed
8.Kulkarni, M., Mazare, A., Gongadze, E., Perutkova, Š, Kralj-Iglič, V., Milošev, I., Schmuki, P., Iglič, A., and Mozetič, M.: Titanium nanostructures for biomedical applications. Nanotechnology 26, 062002 (2015).CrossRefGoogle ScholarPubMed
9.Cai, R., Kubota, Y., Shuin, T., Sakai, H., Hashimoto, K., and Fujishima, A.: Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res. 52, 23462348 (1992).Google ScholarPubMed
10.Yang, G., Yang, D., Yang, P., Lv, R., Li, C., Zhong, C., He, F., Gai, S., and Lin, J.: A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles. Chem. Mater. 27, 79577968 (2015).CrossRefGoogle Scholar
11.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 28912959 (2007).CrossRefGoogle ScholarPubMed
12.Imani, R., Dillert, R., Bahnemann, D.W., Pazoki, M., Apih, T., Kononenko, V., and Iglič, A.: Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small 13, 1700349 (2017).CrossRefGoogle ScholarPubMed
13.Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 99199986 (2014).CrossRefGoogle ScholarPubMed
14.Ji, Z., Jin, X., George, S., Xia, T., Meng, H., Wang, X., and Zink, J.I.: Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ. Sci. Technol. 44, 73097314 (2010).CrossRefGoogle ScholarPubMed
15.Leshuk, T., Linley, S., Baxter, G., and Gu, F.: Mesoporous hollow sphere titanium dioxide photocatalysts through hydrothermal silica etching. ACS Appl. Mater. Interfaces 4, 60626070 (2012).CrossRefGoogle ScholarPubMed
16.Yu, K., Ling, M., Liang, J., and Liang, C.: Formation of TiO2 hollow spheres through nanoscale Kirkendall effect and their lithium storage and photocatalytic properties. Chem. Phys. 517, 222227 (2019).CrossRefGoogle Scholar
17.Liu, D. and Bi, Y.-G.: Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. Adv. Powder Technol. 30, 21692177 (2019).CrossRefGoogle Scholar
18.Assaraf, Y.G., Leamon, C.P., and Reddy, J.A.: The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat. 17, 8995 (2014).CrossRefGoogle ScholarPubMed
19.Lamch, Ł., Kulbacka, J., Dubińska-Magiera, M., Saczko, J., and Wilk, K.A.: Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis Photodyn. Ther. 25, 480491 (2019).CrossRefGoogle ScholarPubMed
20.Feng, L., Wang, C., Li, C., Gai, S., He, F., Li, R., An, G., Zhong, C., Dai, Y., Yang, Z., and Yang, P.: Multifunctional theranostic nanoplatform based on Fe-mTa2O5@CuS-ZnPc/PCM for bimodal imaging and synergistically enhanced phototherapy. Inorg. Chem. 57, 48644876 (2018).CrossRefGoogle ScholarPubMed
21.Li, X., Zheng, B.-D., Peng, X.-H., Li, S.-Z., Ying, J.-W., Zhao, Y., Huang, J.-D., and Yoon, J.: Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord. Chem. Rev. 379, 147160 (2019).CrossRefGoogle Scholar
22.Wang, Z., Gai, S., Wang, C., Yang, G., Zhong, C., Dai, Y., He, F., Yang, D., and Yang, P.: Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chem. Eng. J. 361, 117128 (2019).CrossRefGoogle Scholar
23.Lopez, T., Ortiz, E., Alvarez, M., Navarrete, J., Odriozola, J.A., Martinez-Ortega, F., Páez-Mozo, E.A., Escobar, P., Espinoza, K.A., and Rivero, I.A.: Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine 6, 777785 (2010).CrossRefGoogle ScholarPubMed
24.Shin, Y., Wang, L., Bae, I., Arey, B.W., and Exarhos, G.J.: Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 112, 1423614240 (2008).CrossRefGoogle Scholar
25.Réti, B., Kiss, G.I., Gyulavári, T., Baan, K., Magyari, K., and Hernadi, K.: Carbon sphere templates for TiO2 hollow structures: preparation, characterization and photocatalytic activity. Catal. Today 284, 160168 (2017).CrossRefGoogle Scholar
26.Kalita, H., Konar, S., Tantubay, S., Mahto, M.K., and Pathak, A.: Phase transformation in Mn-doped titania hollow spheres and their biocompatibility studies. Appl. Nanosci. 5, 901910 (2015).CrossRefGoogle Scholar
27.Flak, D., Yate, L., Nowaczyk, G., and Jurga, S.: Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery. Mater. Sci. Eng. C 78, 10721085 (2017).CrossRefGoogle ScholarPubMed
28.van Meerloo, J., Kaspers, G.J.L., and Cloos, J.: Cell sensitivity assays: the MTT assay. Methods Mol. Biol. 731, 237245 (2011).CrossRefGoogle ScholarPubMed
29.Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., and Batzill, M.: Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014).CrossRefGoogle ScholarPubMed
30.Zhang, J., Rana, S., Srivastava, R.S., and Misra, R.D.K.: On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 4, 4048 (2008).CrossRefGoogle ScholarPubMed
31.Shimizu, S. and Kobayashi, N.: Recent advances in the chemistry of phthalocyanines as functional chromophores. In Chemical Science of π-Electron Systems, edited by Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., and Aso, Y. (Springer, Tokyo, 2015) pp. 273291.CrossRefGoogle Scholar
32.Machado, A.E.H., França, M.D., Velani, V., Magnino, G.A., Velani, H.M.M., Freitas, F.S., Müller, P.S. Jr., Sattler, C., and Schmücker, M.: Characterization and evaluation of the efficiency of TiO2/zinc phthalocyanine nanocomposites as photocatalysts for wastewater treatment using solar irradiation. Int. J. Photoenergy 2008, 482373 (2008).CrossRefGoogle Scholar
Supplementary material: File

Uribe-Robles et al. supplementary material

Uribe-Robles et al. supplementary material 1

Download Uribe-Robles et al. supplementary material(File)
File 224.9 KB
Supplementary material: File

Uribe-Robles et al. supplementary material

Uribe-Robles et al. supplementary material 2

Download Uribe-Robles et al. supplementary material(File)
File 199.1 KB
Supplementary material: File

Uribe-Robles et al. supplementary material

Uribe-Robles et al. supplementary material 3

Download Uribe-Robles et al. supplementary material(File)
File 573.6 KB