Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:22:57.588Z Has data issue: false hasContentIssue false

Thermal stability of two-dimensional titanium carbides Tin+1Cn (MXenes) from classical molecular dynamics simulations

Published online by Cambridge University Press:  29 January 2019

Vadym Borysiuk
Affiliation:
Sumy State University, 40007 Sumy, Ukraine
Vadym N. Mochalin*
Affiliation:
Department of Chemistry and Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
*
Address all correspondence to Vadym N. Mochalin at mochalinv@mst.edu
Get access

Abstract

We report the classical molecular dynamics (MD) study of thermal stability of three two-dimensional (2D) titanium carbides Ti2C, Ti3C2, and Ti4C3 (MXenes). Thermal properties of 2D nanomaterials are of fundamental importance and raise particular interest due to their potential applications in nanoelectronics. To investigate the behavior of Tin+1Cn MXenes during heating, structural parameters such as Lindemann indexes, radial distribution functions, and atomistic configurations were calculated. The analysis of MD data allowed us to obtain approximate values of MXene degradation temperatures that are 1050, 1500, and 1700 K for Ti2C, Ti3C2, and Ti3C4 MXenes, respectively.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Navrotsky, A.: Energetics at the nanoscale: impacts for geochemistry, the environment, and materials. MRS Bull. 41, 139 (2016).Google Scholar
2.Alarifi, H.A., Atiş, M., Özdoğan, C., Hu, A., Yavuz, M., and Zhou, Y.: Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289 (2013).Google Scholar
3.Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J.J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).Google Scholar
4.Dong, Y., Chertopalov, S., Maleski, K., Anasori, B., Hu, L., Bhattacharya, S., Rao, A.M., Gogotsi, Y., Mochalin, V.N., and Podila, R.: Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 30, 1705714 (2018).Google Scholar
5.Li, G., Kushnir, K., Dong, Y., Chertopalov, S., Rao, A. M., Mochalin, V.N., Podila, R., and Titova, L.V.: Equilibrium and non-equilibrium free carrier dynamics in 2D Ti3C2Tx MXenes: THz spectroscopy study. 2D Mater. 5, 035043 (2018).Google Scholar
6.Chertopalov, S., and Mochalin, V.N.: Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12, 6109 (2018).Google Scholar
7.Er, D., Li, J., Naguib, M., Gogotsi, Y., and Shenoy, V.B.: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173 (2014).Google Scholar
8.Ghidiu, M., Kota, S., Halim, J., Sherwood, A.W., Nedfors, N., Rosen, J., Mochalin, V.N., and Barsoum, M.W.: Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem. Mater. 29, 1099 (2017).Google Scholar
9.Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N.S., Estili, M., Sakka, Y., and Kawazoe, Y.: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185 (2013).Google Scholar
10.Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall'Agnese, Y., Rozier, P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., and Gogotsi, Y.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013).Google Scholar
11.Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P.L., Simon, P., Barsoum, M.W., and Gogotsi, Y.: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61 (2012).Google Scholar
12.Dong, Y., Mallineni, S.S.K., Maleski, K., Behlow, H., Mochalin, V.N., Rao, A.M., Gogotsi, Y., and Podila, R.: Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103 (2018).Google Scholar
13.Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., and Sinitskii, A.: Elastic properties of 2D Ti3C2Tx; MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018).Google Scholar
14.Kurtoglu, M., Naguib, M., Gogotsi, Y., and Barsoum, M.W.: First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133 (2012).Google Scholar
15.Borysiuk, V.N., Mochalin, V.N., and Gogotsi, Y.: Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes). Nanotechnology 26, 265705 (2015).Google Scholar
16.Ning, Z., Yu, H., Sanaz, Y. and Mohsen Asle, Z.: Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Mater. 5, 045004 (2018).Google Scholar
17.Borysiuk, V.N., Mochalin, V.N., and Gogotsi, Y.: Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Comput. Mater. Sci. 143, 418 (2018).Google Scholar
18.Li, J., Du, Y., Huo, C., Wang, S., and Cui, C.: Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41, 2631 (2015).Google Scholar
19.Li, Z., Wang, L., Sun, D., Zhang, Y., Liu, B., Hu, Q., and Zhou, A.: Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33 (2015).Google Scholar
20.Yang, Z., Yang, X., and Xu, Z.: Molecular dynamics simulation of the melting behavior of Pt–Au nanoparticles with core–shell structure. J. Phys. Chem. C 112, 4937 (2008).Google Scholar
21.Zhang, K., Stocks, G.M., and Zhong, J.: Melting and premelting of carbon nanotubes. Nanotechnology 18, 285703 (2007).Google Scholar
22.Los, J.H., Zakharchenko, K.V., Katsnelson, M.I., and Fasolino, A.: Melting temperature of graphene. Phys. Rev. B 91, 045415 (2015).Google Scholar
23.Singh, S.K., Neek-Amal, M., Costamagna, S., and Peeters, F.M.: Rippling, buckling, and melting of single- and multilayer MoS2. Phys. Rev. B 91, 014101 (2015).Google Scholar
24.Osti, N.C., Naguib, M., Ostadhossein, A., Xie, Y., Kent, P.R.C., Dyatkin, B., Rother, G., Heller, W.T., van Duin, A.C.T., Gogotsi, Y., and Mamontov, E.: Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8, 8859 (2016).Google Scholar
25.van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396 (2001).Google Scholar
26.Lotfi, R., Naguib, M., Yilmaz, D.E., Nanda, J., and van Duin, A.C.T.: A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 6, 12733 (2018).Google Scholar
27.Humphrey, W., Dalke, A., and Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33 (1996).Google Scholar
28.Oymak, H., and Erkoc, F.: Titanium coverage on a single-wall carbon nanotube: molecular dynamics simulations. Chem. Phys. 300, 277 (2004).Google Scholar
29.Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L., and Kelly, T.F.: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005 (2001).Google Scholar
30.Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A., and Haak, J.R.: Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).Google Scholar
31.Wen, Y.-H., Fang, H., Zhu, Z.-Z., and Sun, S.-G.: A molecular dynamics study of shape transformation and melting of tetrahexahedral platinum nanoparticle. Chem. Phys. Lett. 471, 295 (2009).Google Scholar
32.Piątek, A., Dawid, A., and Gburski, Z.: The properties of small fullerenol cluster (C60(OH)24)7: computer simulation. Spectrochim. Acta A 79, 819 (2011).Google Scholar
33.Essajai, R., and Hassanain, N.: Molecular dynamics study of melting properties of gold nanorods. J. Mol. Liq. 261, 402 (2018).Google Scholar
34.Kart, H.H., Yildirim, H., Ozdemir Kart, S., and Çağin, T.: Physical properties of Cu nanoparticles: a molecular dynamics study. Mater. Chem. Phys. 147, 204 (2014).Google Scholar
35.Essajai, R., Rachadi, A., Feddi, E., and Hassanain, N.: MD simulation-based study on the thermodynamic, structural and liquid properties of gold nanostructures. Mater. Chem. Phys. 218, 116 (2018).Google Scholar
36.Lu, S., Zhang, J., and Duan, H.: Melting behaviors of CoN (N=13, 14, 38, 55, 56) clusters. Chem. Phys. 363, 7 (2009).Google Scholar