Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:43:53.843Z Has data issue: false hasContentIssue false

Recent developments in ductile bulk metallic glass composites

Published online by Cambridge University Press:  08 January 2013

M. Ferry*
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
K.J. Laws
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
C. White
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
D.M. Miskovic
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
K.F. Shamlaye
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
W. Xu
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
O. Biletska
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
*
Address all correspondence to M. Ferry at m.ferry@unsw.edu.au
Get access

Abstract

Offering a unique suite of mechanical, physical, and chemical properties, bulk metallic glasses (BMGs) show significant promise as engineering materials. Unfortunately, most BMGs exhibit low tensile ductility at ambient temperature that limits their use as structural (load-bearing) materials. To overcome this problem, BMG composites (BMGCs) containing a second phase are being developed for improving ductility by controlling the mechanics of shear band nucleation and growth in the glassy matrix, which is the primary mode of failure in these materials. This review describes some recent developments in BMGCs and discusses the influence of the type of second phase on mechanical behavior.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Trexler, M.M. and Thadhani, N.N.: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).CrossRefGoogle Scholar
2.Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).Google Scholar
3.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).Google Scholar
4.Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).Google Scholar
5.Greer, A.L.: Metallic glasses…on the threshold. Mater. Today 12, 14 (2009).Google Scholar
6.Schroers, J.: Processing of bulk metallic glass. Adv. Mater. 21, 1 (2009).Google Scholar
7.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
8.Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).Google Scholar
9.Demetriou, M.D., Launey, M.E., Garrett, G., Schramm, J.P., Hofmann, D.C., Johnson, W.L., and Ritchie, R.O.: A damage-tolerant glass. Nature Mater. 10, 123 (2011).Google Scholar
10.Bian, Z., Kato, H., Qin, C.L., Zhang, W., and Inoue, A.: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).CrossRefGoogle Scholar
11.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
12.Xing, L.Q., Eckert, J., Loser, W., and Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
13.Hofmann, D.C., Wiest, J.-Y.S. A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).Google Scholar
14.Choi-Yim, H., Conner, R.D., Szuecs, F., and Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 (2002).CrossRefGoogle Scholar
15.Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, A.L.G.J., and Kvick, A.: Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Crystal. Solids 353, 327 (2007).CrossRefGoogle Scholar
16.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).Google Scholar
17.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).Google Scholar
18.Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).Google Scholar
19.Choi-Yim, H., Lee, S.-Y., and Conner, R.D.: Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites. Scripta Mater. 58, 763 (2008).Google Scholar
20.Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu 6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).Google Scholar
21.Flores, K.M., Johnson, W.L., and Dauskardt, R.H.: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).CrossRefGoogle Scholar
22.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).Google Scholar
23.Inoue, A.: Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles. Intermetallics 8, 455 (2000).Google Scholar
24.Inoue, A., Shen, B.L., Koshiba, H., Kato, H., and Yavari, A.R.: Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater. 52, 1631 (2004).CrossRefGoogle Scholar
25.Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D.: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).Google Scholar
26.Dai, L.H. and Bai, Y.L.: Basic mechanical behaviors and mechanics of shear banding in BMGs. Int. J. Impact Eng. 35, 704 (2008).Google Scholar
27.Hays, C.C., Kim, C.P., and Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng. A 304, 650 (2001).Google Scholar
28.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater. 9, 443 (2007).CrossRefGoogle Scholar
29.Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
30.Choi-Yim, H., Conner, R.D., and Johnson, W.L.: Microstructures and properties of metal reinforced bulk metallic glass composites. Mater. Sci. Forum 360–362, 55 (2001).Google Scholar
31.Kinaka, M., Kato, H., Hasegawa, M., and Inoue, A.: High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Mater. Sci. Eng A 494, 299 (2008).CrossRefGoogle Scholar
32.Zhu, Z., Zhang, H., Hu, Z., Zhang, W., and Inoue, A.: Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Mater. 62, 278 (2010).Google Scholar
33.Eckert, J., Seidel, M., Kubler, A., Klement, U., and Schultz, L.: Oxide dispersion strengthened mechanically alloyed amorphous Zr-Al-Cu-Ni composites. Scripta Mater. 38, 595 (1998).Google Scholar
34.Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S., and Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in situ TiC particles. Scripta Mater. 52, 669 (2005).Google Scholar
35.Lim, H.K., Park, E.S., Park, J.S., Kim, W.T., and Kim, D.H.: Shear band formation and mechanical properties of cold-rolled bulk metallic glass and metallic glass matrix composite. J. Mater. Sci. 40, 6127 (2005).Google Scholar
36.Dandliker, R.D., Conner, R.D., and Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 10 (1998).CrossRefGoogle Scholar
37.Kim, C.P., Bush, R., Masuhr, A., Choi-Yim, H., and Johnson, W.L.: Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Apply. Phys. Lett. 79, 1456 (1997).Google Scholar
38.Siegrist, M.E. and Löffler, J.F.: Bulk metallic glass-graphite composites. Scripta Mater. 56, 1079 (2007).Google Scholar
39.Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
40.Schroers, J., Nguyen, T., and Croopnick, G.A.: A novel metallic glass composite synthesis method. Scripta Mater. 56, 177 (2007).Google Scholar
41.Fan, J.T., Zhang, Z.F., Mao, S.X., Shen, B.L., and Inoue, A.: Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites. Intermetallics 17, 445 (2009).Google Scholar
42.Das, J., Loser, W., Kuhn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr-Nb-(Cu,Ni,Al) composites with enhanced plasticity. Apply. Phys. Lett. 82, 4690 (2003).Google Scholar
43.Choi-Yim, H., Conner, R.D., and Johnson, W.L.: In situ composite formation in the Ni-(Cu)-Ti-Zr-Si system. Scripta Mater. 53, 1467 (2005).CrossRefGoogle Scholar
44.Xu, W., Zheng, R., Laws, K.J., Ringer, S.P., and Ferry, M.: In situ formation of crystalline flakes in Mg-based metallic glass composites by controlled inoculation. Acta Mater. 59, 7776 (2011).CrossRefGoogle Scholar
45.Robin, L., Laws, K.J., Xu, W., Kurniawan, G., Privat, K., and Ferry, M.: The three-dimensional structure of Mg-rich plates in as-cast mg-based bulk metallic glass composites. Metall. Mater. Trans A 41, 1691 (2010).CrossRefGoogle Scholar
46.Fan, C.L.C., Louzguine, D.V., and Inoue, A.: Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys. Appl. Phys. Lett. 75, 340 (1999).Google Scholar
47.Hui, X., Dong, W., Chen, G.L., and Yao, K.F.: Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Mater. 55, 907 (2007).Google Scholar
48.Tan, H., Zhang, Y., and Li, Y.: Synthesis of La-based in situ bulk metallic glass matrix composite. Intermetallics 10, 1203 (2002).Google Scholar
49.Leonhar, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 905 (1998).Google Scholar
50.Doglione, R., Spriano, S., and Battezzati, L.: Static mechanical characterization of a bulk amorphous and nanocrystalline Zr40Ti14Ni11Cu10Be25 alloy. Nanostruct. Mater. 8, 447 (1997).Google Scholar
51.Gilbert, C.J., Ritchie, R.O., and Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
52.Xu, W., Robin, L., Zheng, R., Laws, K.J., and Ferry, M.: Phase redistribution in an in situ Mg-based bulk metallic glass composite during deformation in the supercooled liquid region. Scripta Mater. 63, 556 (2010).Google Scholar
53.Strife, J.R. and Prewo, K.M.: Mechanical behaviour of an amorphous metal ribbon reinforced resin-matrix composite. J. Mater. Sci. 17, 359 (1982).Google Scholar
54.Fan, C., Li, C.F., Inoue, A., and Haas, V.: Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 61, R3761 (2000).Google Scholar
55.Fu, X.L., Li, Y., and Schuh, C.A.: Mechanical properties of metallic glass matrix composites: effects of reinforcement character and connectivity. Scripta Mater. 56, 617 (2007).Google Scholar
56.Li, Z.G., Hui, X., Zhang, C.M., and Chen, G.L.: Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal. J. Alloys Compds. 454, 168 (2008).Google Scholar
57.Liang, J.Z. and Li, R.K.Y.: Rubber toughening in polypropylene – a review. J. Appl. Polym. Sci. 77, 409 (2000).3.0.CO;2-N>CrossRefGoogle Scholar
58.Hofmann, D.C.: Shape memory bulk metallic glass composites. Science 329, 1294 (2010).Google Scholar
59.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473 (2010).Google Scholar
60.Pauly, S., Liu, G., Wang, G., Das, J., Kim, K.B., Kühn, U., and Eckert, J.: Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009).Google Scholar
61.Gargarella, P., Pauly, S., Song, K.K., Hu, J., Barekar, N.S., Samadi Khoshkhoo, M., Teresiak, A., Wendrock, H., Kühn, U., Ruffing, C., Kerscher, E., and Eckert, J.: Ti-Cu-Ni shape memory bulk metallic glass composites. Acta Mater. 61, 151 (2013).Google Scholar