Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T14:37:47.590Z Has data issue: false hasContentIssue false

PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings

Published online by Cambridge University Press:  30 May 2017

Dimitrios A. Koutsouras
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Adel Hama
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Jolien Pas
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Paschalis Gkoupidenis
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Bruno Hivert
Affiliation:
Aix Marseille University, CNRS, CRN2M, Marseille, France CSO@MyEnterix, 13344 Marseille, France
Catherine Faivre-Sarrailh
Affiliation:
Aix Marseille University, CNRS, CRN2M, Marseille, France CSO@MyEnterix, 13344 Marseille, France
Eric Di Pasquale
Affiliation:
Aix Marseille University, CNRS, CRN2M, Marseille, France CSO@MyEnterix, 13344 Marseille, France
Róisín M. Owens
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
George G. Malliaras*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
*
Address all Correspondence to George G. Malliaras at malliaras@emse.fr
Get access

Abstract

In vitro electrophysiology using microelectrode arrays (MEAs) plays an important role in understanding fundamental biologic processes, screening potential drugs and assessing the toxicity of chemicals. Low electrode impedance and ability to sustain viable cultures are the key technology requirements. We show that MEAs consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and coated with poly-L-lysine satisfy these requirements. Hippocampal cell cultures, maintained for 3–6 weeks on these MEAs, give high quality recordings of neural activity. This enables the observation of drug-induced activity changes, which paves the way for using these devices in in vitro drug screening and toxicology applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This author was an editor of this journal during the review and decision stage. For the MRC policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

1. Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2, 19 (1980).Google Scholar
2. Nam, Y. and Wheeler, B.C.: In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39, 45 (2011).Google Scholar
3. Steidl, E.M., Neveu, E., Bertrand, D., and Buisson, B.: The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res. 1096, 70 (2006).CrossRefGoogle ScholarPubMed
4. Sessolo, M., Khodagholy, D., Rivnay, J., Maddalena, F., Gleyzes, M., Steidl, E., Buisson, B., and Malliaras, G.G.: Easy-to-Fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135 (2013).Google Scholar
5. Arnold, F.J., Hofmann, F., Bengtson, C.P., Wittmann, M., Vanhoutte, P., and Bading, H.: Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. J. Physiol. 564, 3 (2005).Google Scholar
6. Kanagasabapathi, T.T., Massobrio, P., Barone, R.A., Tedesco, M., Martinoia, S., Wadman, W.J., and Decre, M.M.: Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. J Neural Eng 9, 036010 (2012).Google Scholar
7. Soldatow, V.Y., LeCluyse, E.L., Griffith, L.G., and Rusyn, I.: In vitro models for liver toxicity testing. Toxicol. Res. 2, 23 (2013).Google Scholar
8. Rivnay, J., Owens, R.M., and Malliaras, G.G.: The rise of organic bioelectronics. Chem. Mater. 26, 679 (2014).Google Scholar
9. Buzsaki, G., Anastassiou, C.A., and Koch, C.: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407 (2012).Google Scholar
10. Ludwig, K.A., Langhals, N.B., Joseph, M.D., Richardson-Burns, S.M., Hendricks, J.L., and Kipke, D.R.: Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural. Eng. 8, 014001 (2011).Google Scholar
11. Nam, Y., Wheeler, B.C., and Heuschkel, M.O.: Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array. J. Neurosci. Methods 155, 296 (2006).Google Scholar
12. Geissler, M. and Faissner, A.: A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays. J. Neurosci. Methods 204, 262 (2012).Google Scholar
13. Yang, Z., Zhao, Q., Keefer, E., and Liu, W.: Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording, edited by Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I. and Culotta, A. (NIPs Proc. 22, Vancouver, BC, Canada, 2009), p. 2160.Google Scholar
14. Ludwig, K.A., Uram, J.D., Yang, J., Martin, D.C., and Kipke, D.R.: Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural. Eng. 3, 59 (2006).CrossRefGoogle Scholar
15. Kovacs, G.T.A.: Introduction to the theory, design and modeling of thin-film microelectrodes for neural interfaces. In Enabling Technologies for Cultured Neural Networks, edited by Stenger, D.A. and McKenna, T.M. (Academic Press, London, 1994), p. 121.Google Scholar
16. Berggren, M. and Richter-Dahlfors, A.: Organic bioelectronics. Adv. Mater. 19, 3201 (2007).Google Scholar
17. Green, R. and Abidian, M.R.: Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 27, 7620 (2015).Google Scholar
18. Martin, D.C. and Malliaras, G.G.: Interfacing electronic and ionic charge transport in bioelectronics. ChemElectroChem 3, 686 (2016).Google Scholar
19. Proctor, C.M., Rivnay, J., and Malliaras, G.G.: Understanding volumetric capacitance in conducting polymers. J.Polym. Sci. Part B:Polym. Phys. 54, 1433 (2016).Google Scholar
20. Nyberg, T., Shimada, A., and Torimitsu, K.: Ion conducting polymer microelectrodes for interfacing with neural networks. J. Neurosci. Methods 160, 16 (2007).Google Scholar
21. Blau, A., Murr, A., Wolff, S., Sernagor, E., Medini, P., Iurilli, G., Ziegler, C., and Benfenati, F.: Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778 (2011).CrossRefGoogle ScholarPubMed
22. Richardson-Burns, S.M., Hendricks, J.L., Foster, B., Povlich, L.K., Kim, D.-H., and Martin, D.C.: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539 (2007).CrossRefGoogle Scholar
23. Cui, X., Lee, V.A., Raphael, Y., Wiler, J.A., Hetke, J.F., Anderson, D.J., and Martin, D.C.: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J.Biomed. Mater. Res. 56, 261 (2001).3.0.CO;2-I>CrossRefGoogle ScholarPubMed
24. Richardson, R.T., Thompson, B., Moulton, S., Newbold, C., Lum, M.G., Cameron, A., Wallace, G., Kapsa, R., Clark, G., and O'Leary, S.: The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 28, 513 (2007).Google Scholar
25. Green, R.A., Hassarati, R.T., Bouchinet, L., Lee, C.S., Cheong, G.L., Yu, J.F., Dodds, C.W., Suaning, G.J., Poole-Warren, L.A., and Lovell, N.H.: Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials 33, 5875 (2012).Google Scholar
26. Abidian, M.R., Corey, J.M., Kipke, D.R., and Martin, D.C.: Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6, 421 (2010).Google Scholar
Supplementary material: PDF

Koutsouras supplementary material

Figures S1-S3

Download Koutsouras supplementary material(PDF)
PDF 1.2 MB