Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:28:34.577Z Has data issue: false hasContentIssue false

Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode

Published online by Cambridge University Press:  17 October 2019

Shilpi Verma
Affiliation:
Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh-201002, India CSIR-National Physical Laboratory (Campus), Dr. K. S. Krishnan Road, New Delhi110012, India
Surinder P. Singh*
Affiliation:
Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh-201002, India CSIR-National Physical Laboratory (Campus), Dr. K. S. Krishnan Road, New Delhi110012, India
*
Address all correspondence to Surinder P. Singh at singh.uprm@gmail.com
Get access

Abstract

Multifunctional materials with excellent biocompatibility and electron-transport properties are critical for the pursuit of point-of-care biosensing devices. The authors report the synthesis of zinc oxide–reduced graphene oxide (ZnO–rGO) nanocomposite for the fabrication of an electrochemical immunosensing test-bed for noninvasive onsite detection of oral cancer biomarker (interleukin-8, IL8). The immunosensor showed successful detection of IL8 at low concentration ranges, i.e., 100 fg/mL–5 ng/mL with a sensitivity of 12.46 ± 0.82 µA mL/ng and a detection limit of 51.53 ± 0.43 pg/mL. These results have been validated through in vitro investigations using real saliva samples spiked with IL8.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Siegel, R.L., Miller, K.D., and Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68, 730 (2018).10.3322/caac.21442CrossRefGoogle ScholarPubMed
2.Krishna Rao, S.V., Mejia, G., Roberts-Thomson, K., and Logan, R.: Epidemiology of oral cancer in Asia in the past decade – an update (2000–2012). Asian. Pac. J. Cancer Prev. 14, 55675577 (2013).Google Scholar
3.Rivera, C.: Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 8, 1188411894 (2015).Google ScholarPubMed
4.Mehrotra, R. and Gupta, D.K.: Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol. 3, 33 (2011).10.1186/1758-3284-3-33CrossRefGoogle ScholarPubMed
5.Nimse, S.B., Sonawane, M.D., Song, K.-S., and Kim, T.: Biomarker detection technologies and future directions. Analyst 141, 740755 (2016).10.1039/C5AN01790DCrossRefGoogle ScholarPubMed
6.Chikkaveeraiah, B.V., Bhirde, A.A., Morgan, N.Y., Eden, H.S., and Chen, X.: Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6, 65466561 (2012).10.1021/nn3023969CrossRefGoogle ScholarPubMed
7.Watanabe, H., Iwase, M., Ohashi, M., and Nagumo, M.: Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol. 38, 670679 (2002).10.1016/S1368-8375(02)00006-4CrossRefGoogle ScholarPubMed
8.St. John, M.A., Li, Y., Zhou, X., Denny, P., Ho, C.M., Montemagno, C.D., Shi, W., Qi, F., Wu, B., Shinha, U., Jordan, R., Wolinsky, L., Park, N.H., Liu, H., Abemayor, E., and Wong, D.T.W.: Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 130, 929935 (2004).10.1001/archotol.130.8.929CrossRefGoogle ScholarPubMed
9.Anik, U. and Timur, S.: Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv. 6, 111831111841 (2016).10.1039/C6RA23686CCrossRefGoogle Scholar
10.Rusling, J.F., Sotzing, G., and Papadimitrakopoulos, F.: Designing nanomaterials-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochem. 76, 189194 (2009).10.1016/j.bioelechem.2009.03.011CrossRefGoogle Scholar
11.Wang, L., Xiong, Q., Xiao, F., and Duan, H.: 2D nanomaterials based electrochemical biosensors of cancer diagnosis. Biosens. Bioelectron. 89, 136151 (2017).10.1016/j.bios.2016.06.011CrossRefGoogle ScholarPubMed
12.Verma, S., Singh, A., Shukla, A., Kaswan, J., Arora, K., Ramirez-Vick, J., Singh, P., and Singh, S.P.: Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Interfaces 9, 2746227474 (2017).10.1021/acsami.7b06839CrossRefGoogle ScholarPubMed
13.Pachauri, N., Dave, K., Dinda, A., and Solanki, P.R.: Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B 6, 30003012 (2018).10.1039/C8TB00653ACrossRefGoogle ScholarPubMed
14.Arya, S.K., Saha, S., Ramirez-Vick, J.E., Gupta, V., Bhansali, S., and Singh, S.P.: Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 121 (2012).10.1016/j.aca.2012.05.048CrossRefGoogle ScholarPubMed
15.Cote, L.J., Kim, F., and Huang, J.: Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 10431049 (2009).10.1021/ja806262mCrossRefGoogle ScholarPubMed
16.Spanhel, L. and Anderson, M.A.: Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 28262833 (1991).CrossRefGoogle Scholar
17.Chen, Y.-L., Hu, Z.-A., Chang, Y.-Q., Wang, H.-W., Zhang, Z.-Y., Yang, Y.-Y., and Wu, H.-Y.: Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 25632571 (2011).CrossRefGoogle Scholar
18.Tien, H.N., Luan, V.H., Hoa, L.T., Khoa, N.T., Hahn, S.H., Chung, J.S., Shin, E.W., and Hur, S.H.: One pot-synthesis of reduced graphene oxide-zinc oxide sphere composites and its use as a visible light photocatalyst. Chem. Eng. J. 229, 126133 (2013).10.1016/j.cej.2013.05.110CrossRefGoogle Scholar
19.Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L., and Wang, X.: Reduced graphene oxide/zinc oxide composite: reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces 4, 30843090 (2012).CrossRefGoogle Scholar
20.Debanath, M.K. and Karmarkar, S.: Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 15, 116117 (2013).CrossRefGoogle Scholar
21.Wang, J.: Analytical Electrochemistry, Vol. 272, 3rd ed. (John Wiley and Sons, New Jersey, 2006).10.1002/0471790303CrossRefGoogle Scholar
22.Bard, A.J. and Faulkner, L.R.: Electrochemical Methods Fundamentals and Applications, 2nd ed. (John Wiley and Sons, Inc., USA, 2001).Google Scholar
23.Verma, S., Choudhary, J., Singh, K.P., Chandra, P., and Singh, S.P.: Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int. J. Biol. Macromol. 130, 333341 (2019).10.1016/j.ijbiomac.2019.02.121CrossRefGoogle ScholarPubMed
24.Jain, S., Verma, S., Singh, S.P., and Sharma, S.N.: An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens. Bioelectron. 127, 135141 (2019).10.1016/j.bios.2018.12.008CrossRefGoogle ScholarPubMed
Supplementary material: File

Verma and Singh supplementary material

Verma and Singh supplementary material

Download Verma and Singh supplementary material(File)
File 959.8 KB