Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T10:14:39.109Z Has data issue: false hasContentIssue false

A new electronic assay enables ultrasensitive detection of diverse biological analytes—nucleic acids, proteins and small molecules—on a single integrated circuit

Published online by Cambridge University Press:  18 October 2012

Leyla Soleymani*
Affiliation:
Department of Engineering Physics, School of Biomedical Engineering, McMaster University, Hamilton, ON L8N 4K1, Canada
*
Address all correspondence to Leyla Soleymani atsoleyml@mcmaster.ca
Get access

Abstract

Development of universal biosensors based on electrical readout is currently limited by the difficulty of electrical signal transduction upon capture of neutral analytes. Kelley and co-workers demonstrate an elegant approach wherein an amplified electrical current flows to a multiplexed electrode array in proportion with the binding of nucleic acids, proteins, and small molecules—regardless of their inherent charge. Here we present a commentary on the strengths and limitations of this method.

Type
Commentaries
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Soleymani, L., Fang, Z., Sargent, E., and Kelley, S.O.: Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4, 844 (2009).Google Scholar
2. Ziegler, A., Koch, A., Krockenberger, K., and Großhennig, A.: Personalized medicine using DNA biomarkers: a review. Hum. Genet. 131, 1627 (2012).Google Scholar
3. Rifai, N., Gillette, M.A., and Carr, S.A.: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971 (2006).Google Scholar
4. Iliuk, A.B., Hu, L., and Tao, W.A.: Aptamer in bioanalytical applications. Anal. Chem. 83, 4440 (2011).Google Scholar
5. Das, J., Cederquist, K.B., Zaragoza, A.A., Lee, P.E., Sargent, E.H., and Kelley, S.O.: An ultrasensitive universal detector based on neutralizer displacement. Nat. Chem. 4, 642 (2012).Google Scholar
6. Lapierre-Devlin, M., Asher, C.L., Taft, B.J., Gasparac, R., Roberts, M.A., and Kelley, S.O.: Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 5, 1051 (2005).CrossRefGoogle ScholarPubMed
7. Drummond, T.G., Hill, M.G., and Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192 (2003).Google Scholar
8. Zeglis, B.M. and Barton, J.K.: DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications. Nat. Biotechnol. 2, 357 (2007).Google Scholar
9. Wang, H., Bhunia, A.K., and Lu, C.: A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 22, 582 (2006).CrossRefGoogle ScholarPubMed
10. Plaxco, K.W. and Soh, H.T.: Witch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol. 29, 1 (2011).Google Scholar
11. Lapierre, M.A., O'Keefe, M., Taft, B.J., and Kelley, S.O.: Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Anal. Chem. 75, 6327 (2003).Google Scholar
12. Soleymani, L., Fang, Z., Sun, X., Yang, H., Taft, B., Sargent, E., and Kelley, S.O.: Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew. Chem. Int. Ed. (International ed. in English). 48, 8457 (2009).Google Scholar
13. Gasparac, R., Taft, B.J., Lapierre-Devlin, M., Lazareck, A.D., Xu, J.M., and Kelley, S.O.: Ultrasensitive electrocatalytic DNA detection with 3D nanoelectrodes. J. Am. Chem. Soc. 126, 12270 (2004).Google Scholar
14. Soleymani, L., Fang, Z., Kelley, S.O., and Sargent, E.H.: Integrated nanostructures for direct detection of DNA at attomolar concentrations. Appl. Phys. Lett. 95, 143701 (2009).Google Scholar
15. Yao, W., Wang, L., Wang, H., Zhang, X., and Li, L.: An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosens. Bioelectron. 24, 3269 (2009).Google Scholar
16. Zuo, X., Song, S., Zhang, J., Pan, D., Wang, L., and Fan, C.: A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129, 1042 (2007).CrossRefGoogle ScholarPubMed