Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T10:15:39.510Z Has data issue: false hasContentIssue false

Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism

Published online by Cambridge University Press:  01 August 2018

Philipp Schroth*
Affiliation:
University of Siegen, Solid State Physics, Emmy-Noether Campus, Walter-Flex Straße 3, D-57068 Siegen, Germany Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstraße, 12, D-76131 Karlsruhe, Germany Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Julian Jakob
Affiliation:
Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstraße, 12, D-76131 Karlsruhe, Germany Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Ludwig Feigl
Affiliation:
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Seyed Mohammad Mostafavi Kashani
Affiliation:
University of Siegen, Solid State Physics, Emmy-Noether Campus, Walter-Flex Straße 3, D-57068 Siegen, Germany
Ullrich Pietsch
Affiliation:
University of Siegen, Solid State Physics, Emmy-Noether Campus, Walter-Flex Straße 3, D-57068 Siegen, Germany
Tilo Baumbach
Affiliation:
Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstraße, 12, D-76131 Karlsruhe, Germany Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
*
Address all correspondence to Philipp Schroth at philipp.schroth@kit.edu
Get access

Abstract

We investigate the impact of increasing number density of self-catalyzed GaAs nanowires (NWs) on their crystal structure, grown by molecular beam epitaxy. To this end, we employ an iterative, lithography-free approach for varying the number density of self-catalyzed GaAs NWs grown on Si(111) covered with native oxide. We use scanning electron microscopy and x-ray diffraction in combination with simulations based on the extended Markov model for the morphologic characterization of the so obtained NWs. Our findings show how both the shape of the Ga-droplet and the NW crystal structure are affected even by relatively small changes of the wire number density, allowing for a quantification of its influence on the local NW growth conditions at nominally identical growth parameters.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miao, X., Chabak, K., Zhang, C., Mohseni, P.K., Walker, D., and Li, X.: High-speed planar GaAs nanowire arrays with f max > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 15, 27802786 (2015).+75+GHz+by+wafer-scale+bottom-up+growth.+Nano+Lett.+15,+2780–2786+(2015).>Google Scholar
2.Dimakis, E., Jahn, U., Ramsteiner, M., Tahraoui, A., Grandal, J., Kong, X., Marquardt, O., Trampert, A., Riechert, H., and Geelhaar, L.: Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14, 26042609 (2014).Google Scholar
3.Mayer, B., Rudolph, D., Schnell, J., Morkötter, S., Winnerl, J., Treu, J., Müller, K., Bracher, G., Abstreiter, G., Koblmüller, G., and Finley, J.J.: Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).Google Scholar
4.Krogstrup, P., Jørgensen, H.I., Heiss, M., Demichel, O., Holm, J.V., Aagesen, M., Nygard, J., and Fontcuberta i Morral, A.: Single nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7, 306310 (2013).Google Scholar
5.Tomioka, K. and Fukui, T.: Recent progress in integration of III–V nanowire transistors on Si substrate by selective-area growth. J. Phys. D Appl. Phys. 47, 394001 (2014).Google Scholar
6.Fontcuberta i Morral, A., Colombo, C., Abstreiter, G., Arbiol, J., and Morante, J.R.: Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).Google Scholar
7.Colombo, C., Spirkoska, D., Frimmer, M., Abstreiter, G., and Fontcuberta i Morral, A.: Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).Google Scholar
8.Jacobsson, D., Panciera, F., Tersoff, J., Reuter, M.C., Lehmann, S., Hofmann, S., Dick, K.A., and Ross, F.M.: Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317322 (2016).Google Scholar
9.Matteini, F., Dubrovskii, V.G., Rüffer, D., Tütüncüoglu, G., Fontana, Y., and Fontcuberta i Morral, A.: Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015).Google Scholar
10.Krogstrup, P., Popovitz-Biro, R., Johnson, E., Madsen, M.H., Nygård, J., and Shtrikman, H.: Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett. 10, 44754482 (2010).Google Scholar
11.Bastiman, F., Küpers, H., Somaschini, C., and Geelhaar, L.: Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016).Google Scholar
12.Plissard, S., Larrieu, G., Wallart, X., and Caroff, P.: High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 22, 275602 (2011).Google Scholar
13.Gibson, S.J. and LaPierre, R.R.: Model of patterned self-assisted nanowire growth. Nanotechnology 25, 415304 (2014).Google Scholar
14.Krogstrup, P., Curiotto, S., Johnson, E., Aagesen, M., Nygård, J., and Chatain, D.: Impact of the liquid phase shape on the structure of III-V nanowires. Phys. Rev. Lett. 106, 125505 (2011).Google Scholar
15.Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., and Jagadish, C.: Phase perfection in zinc blende and wurtzite III−V nanowires using basic growth parameters. Nano Lett. 10, 908915 (2010).Google Scholar
16.Mårtensson, T., Carlberg, P., Borgström, M., Montelius, L., Seifert, W., and Samuelson, L.: Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699702 (2004).Google Scholar
17.Munshi, A.M., Dheeraj, D.L., Fauske, V.T., Kim, D.C., Huh, J., Reinertsen, J.F., Ahtapodov, L., Lee, K.D., Heidari, B., van Helvoort, A.T.J., Fimland, B.O., and Weman, H.: Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth. Nano Lett. 14, 960966 (2014).Google Scholar
18.Heiß, M., Riedlberger, E., Spirkoska, D., Bichler, M., Abstreiter, G., and Fontcuberta i Morral, A.: Growth mechanisms and optical properties of GaAs-based semiconductor microstructures by selective area epitaxy. J. Cryst. Growth 310, 10491056 (2008).Google Scholar
19.Mosberg, A.B., Myklebost, S., Ren, D., Weman, H., Fimland, B.O., and van Helvoort, A.T.J.: Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision. J. Phys Conf. Ser. 902, 012020 (2017).Google Scholar
20.Somaschini, C., Bietti, S., Trampert, A., Jahn, U., Hauswald, C., Riechert, H., Sanguinetti, S., and Geelhaar, L.: Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy. Nano Lett. 13, 36073613 (2013).Google Scholar
21.Tauchnitz, T., Nurmamytov, T., Hübner, R., Engler, M., Facsko, S., Schneider, H., Helm, M., and Dimakis, E.: Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates. Cryst. Growth Des. 17, 52765282 (2017).Google Scholar
22.Hakkarainen, T.V., Schramm, A., Mäkelä, J., Laukkanen, P., and Guina, M.: Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015).Google Scholar
23.Küpers, H., Bastiman, F., Luna, E., Somaschini, C., and Geelhaar, L.: Ga predeposition for the Ga-assisted growth of GaAs nanowire ensembles with low number density and homogeneous length. J. Cryst. Growth 459, 4349 (2017).Google Scholar
24.Ramdani, M., Harmand, J.-C., Glas, F., Patriarche, G., and Travers, L.: Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 9196 (2013).Google Scholar
25.Pietsch, U., Holy, V., and Baumbach, T.: High-Resolution X-Ray Scattering from thin films to lateral nanostructures, Springer-Verlag New York, Advanced Texts in Physics, ISBN 0-387-40092-3 (2004).Google Scholar
26.Köhl, M., Schroth, P., Minkevich, A.A., Hornung, J.-W., Dimakis, E., Somaschini, C., Geelhaar, L., Aschenbrenner, T., Lazarev, S., Grigoriev, D., Pietsch, U., and Baumbach, T.: Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by x-ray diffraction. J. Synchrotron. Radiat. 22, 6775 (2015).Google Scholar
27.Schroth, P., Köhl, M., Hornung, J.-W., Dimakis, E., Somaschini, C., Geelhaar, L., Biermanns, A., Bauer, S., Lazarev, S., Pietsch, U., and Baumbach, T.: Evolution of polytypism in GaAs nanowires during growth revealed by time-resolved in situ x-ray diffraction. Phys. Rev. Lett. 114, 055504 (2015).Google Scholar
28.Köhl, M., Schroth, P., and Baumbach, T.: Perspectives and limitations of symmetric x-ray Bragg reflections for inspecting polytypism in nanowires. J. Synchrotron. Radiat. 23, 487500 (2016).Google Scholar
29.Dheeraj, D.L., Patriarche, G., Zhou, H., Hoang, T.B., Moses, A.F., Grønsberg, S., van Helvoort, A.T.J., Fimland, B.O., and Weman, H.: Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 44594463 (2008).Google Scholar
30.Jacobsson, D., Yang, F., Hillerich, K., Lenrick, F., Lehmann, S., Kriegner, D., Stangl, J., Wallenberg, L.R., Dick, K.A., and Johansson, J.: Phase transformation in radially merged wurtzite GaAs nanowires. Cryst. Growth Des. 15, 47954803 (2015).Google Scholar
31.Johansson, J., Bolinsson, J., Ek, M., Caroff, P., and Dick, K.A.: Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 6, 61426149 (2012).Google Scholar
32.Tersoff, J.: Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15, 66096613 (2015).Google Scholar
33.Oehler, F., Cattoni, A., Scaccabarozzi, A., Patriarche, G., Glas, F., and Harmand, J.-C.: Measuring and modeling the growth dynamics of self-catalyzed GaP nanowire arrays. Nano Lett. 18, 701708 (2018).Google Scholar
Supplementary material: File

Schroth et al. supplementary material

Schroth et al. supplementary material 1

Download Schroth et al. supplementary material(File)
File 2.2 MB