Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T10:04:53.028Z Has data issue: false hasContentIssue false

High-frequency organic rectifiers through interface engineering

Published online by Cambridge University Press:  20 September 2017

Chan-mo Kang
Affiliation:
IoT Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea
Hyeonwoo Shin
Affiliation:
Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, 08826, Korea
Changhee Lee*
Affiliation:
Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, 08826, Korea
*
Address all correspondence to C. Lee at chlee7@snu.ac.kr
Get access

Abstract

The demand for high-frequency (HF) and low-cost rectifiers has encouraged many researchers to investigate organic rectifiers. Recently, organic rectifiers with enhanced intrinsic carrier mobility and charge injection efficiency have enabled operating frequencies to reach up to a gigahertz (GHz). The metal/organic and organic/organic interfaces have played a significant role in determining the electrical properties of the organic rectifiers. In this prospective article, we review the structure of organic rectifiers and present the current state-of-the-art to attain their HF performance. We discuss methods for improving their electrical properties using interface engineering and present future prospects for practical use of GHz-operable organic rectifiers.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voss, D.: Cheap and cheerful circuits. Nature 407, 442 (2000).CrossRefGoogle ScholarPubMed
2. Berggren, M., Nilsson, D., and Robinson, N.D.: Organic materials for printed electronics. Nat. Mater. 6, 3 (2007).CrossRefGoogle ScholarPubMed
3. Lee, J., Sung, W.J., Joo, C.W., Cho, H., Cho, N., Lee, G.W., Hwang, D.H., and Lee, J.I.: Simplified bilayer white phosphorescent organic light-emitting diodes. ETRI J. 38, 260 (2016).Google Scholar
4. Jung, S.W., Na, B.S., Baeg, K.J., Kim, M., Yoon, S.M., Kim, J., Kim, D.Y., and You, I.K.: Nonvolatile ferroelectric P(VDF-TrFE) memory transistors based on inkjet-printed organic semiconductor. ETRI J. 35, 734 (2013).Google Scholar
5. Kim, Y.H., Moon, D.G., and Han, J.I.: Organic TFT array on a paper substrate. IEEE Electron Device Lett. 25, 702 (2004).CrossRefGoogle Scholar
6. Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).Google Scholar
7. Myny, K., Rockelé, M., Chasin, A., Pham, D.V., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., Der Van Putten, B., Gelinck, G.H., Genoe, J., Dehaene, W., and Heremans, P.: Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag. IEEE Trans. Electron Devices 61, 2387 (2014).Google Scholar
8. Shakiba, M., Zavvari, A., Aleebrahim, N., and Singh, M.J.: Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014. Scientometrics 109, 591 (2016).Google Scholar
9. Fiore, V., Battiato, P., Abdinia, S., Jacobs, S., Chartier, I., Coppard, R., Klink, G., Cantatore, E., Ragonese, E., and Palmisano, G.: An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1668 (2015).CrossRefGoogle Scholar
10. Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D. V., and Theiss, S.D.: Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 82, 3964 (2003).CrossRefGoogle Scholar
11. Myny, K., Steudel, S., Vicca, P., Beenhakkers, M.J., van Aerle, N.A.J.M., Gelinck, G.H., Genoe, J., Dehaene, W., and Heremans, P.: Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid. State. Electron. 53, 1220 (2009).Google Scholar
12. Kang, C., Wade, J., Yun, S., Lim, J., Cho, H., Roh, J., Lee, H., Nam, S., Bradley, D.D.C., Kim, J.-S., and Lee, C.: 1 GHz pentacene diode rectifiers enabled by controlled film deposition on SAM-treated au anodes. Adv. Electron. Mater. 2, 1500282 (2016).Google Scholar
13. Im, D., Moon, H., Shin, M., Kim, J., and Yoo, S.: Towards gigahertz operation: ultrafast low turn-on organic diodes and rectifiers based on C60 and tungsten oxide. Adv. Mater. 23, 644 (2011).CrossRefGoogle ScholarPubMed
14. Steudel, S., Myny, K., Arkhipov, V., Deibel, C., De Vusser, S., Genoe, J., and Heremans, P.: 50 MHz rectifier based on an organic diode. Nat. Mater. 4, 597 (2005).CrossRefGoogle Scholar
15. Ai, Y., Gowrisanker, S., Jia, H., Trachtenberg, I., Vogel, E., Wallace, R.M., Gnade, B.E., Barnett, R., Stiegler, H., and Edwards, H.: 14MHz organic diodes fabricated using photolithographic processes. Appl. Phys. Lett. 90, 262105 (2007).Google Scholar
16. Myny, K., Steudel, S., Vicca, P., Genoe, J., and Heremans, P.: An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz. Appl. Phys. Lett. 93, 093305 (2008).CrossRefGoogle Scholar
17. Wang, H., Ji, Z., Shang, L., Liu, X., Peng, Y., and Liu, M.: Interface effect on the performance of rectifier based on organic diode. IEEE Electron Device Lett. 31, 506 (2010).Google Scholar
18. Kang, C., Hong, Y., and Lee, C.: Frequency performance optimization of flexible pentacene rectifier by varying the thickness of active layer. Jpn. J. Appl. Phys. 49, 05EB07 (2010).Google Scholar
19. Kang, C., Cho, H., Lee, H., and Lee, C.: Organic rectifier with transfer-printed metal as a top electrode. J. Korean Phys. Soc. 59, 470 (2011).Google Scholar
20. Cvetkovic, N.V., Sidler, K., Savu, V., Brugger, J., Tsamados, D., and Ionescu, A.M.: Organic half-wave rectifier fabricated by stencil lithography on flexible substrate. Microelectron. Eng. 100, 47 (2012).CrossRefGoogle Scholar
21. Gutierrez-Heredia, G., Martinez-Landeros, V.H., Aguirre-Tostado, F.S., Shah, P., Gnade, B.E., Sotelo-Lerma, M., and Quevedo-Lopez, M.A.: Full bridge circuit based on pentacene schottky diodes fabricated on plastic substrates. Semicond. Sci. Technol. 27, 85013 (2012).CrossRefGoogle Scholar
22. Ai, Y., Gowrisanker, S., Jia, H., Quevedo-Lopez, M., Alshareef, H.N., Wallace, R.M., and Gnade, B.E.: Encapsulation of high frequency organic Schottky diodes. Thin Solid Films 531, 509 (2013).CrossRefGoogle Scholar
23. Kang, C., Cho, H., Park, M., Roh, J., and Lee, C.: Effects of insertion of hole injection layers on pentacene rectifying diodes. J. Nanosci. Nanotechnol. 14, 5301 (2014).CrossRefGoogle ScholarPubMed
24. Kim, S., Cho, H., Hong, Y., and Lee, C.: Effect of electrode area on high speed characteristics over 1 MHz of poly(3-hexylthiophene-2,5-diyl) diode with Inkjet-printed Ag electrode. Mol. Cryst. Liq. Cryst. 513, 256 (2009).Google Scholar
25. Lilja, K.E., Bäcklund, T.G., Lupo, D., Hassinen, T., and Joutsenoja, T.: Gravure printed organic rectifying diodes operating at high frequencies. Org. Electron. 10, 1011 (2009).Google Scholar
26. Kang, C., Kim, S., Hong, Y., and Lee, C.: Frequency analysis on poly(3-hexylthiopene) rectifier using impedance spectroscopy. Thin Solid Films 518, 889 (2009).Google Scholar
27. Kang Dae, K., Jae Bon, K., Yong-Young, N., Jong Keun, L., Yong Suk, Y., and In-Kyu, Y.: Variations in the electric characteristics of an organic Schottky diode with the P3HT thickness. J. Korean Phys. Soc. 57, 124 (2010).Google Scholar
28. Lin, C.-Y., Tsai, C.-H., Lin, H.-T., Chang, L.-C., Yeh, Y.-H., Pei, Z., Peng, Y.-R., and Wu, C.-C.: High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets. Org. Electron. 12, 1777 (2011).Google Scholar
29. Heljo, P.S., Li, M., Lilja, K.E., Majumdar, H.S., and Lupo, D.: Printed half-wave and full-wave rectifier circuits based on organic diodes. IEEE Trans. Electron Devices 60, 870 (2013).Google Scholar
30. Li, M., Heljo, P.S., and Lupo, D.: Organic rectifying diode and circuit for wireless power harvesting at 13.56 MHz. IEEE Trans. Electron Devices 61, 2164 (2014).Google Scholar
31. Altazin, S., Clerc, R., Gwoziecki, R., Verilhac, J.-M., Boudinet, D., Pananakakis, G., Ghibaudo, G., Chartier, I., and Coppard, R.: Physics of the frequency response of rectifying organic Schottky diodes. J. Appl. Phys. 115, 064509 (2014).CrossRefGoogle Scholar
32. Bose, I., Tetzner, K., Borner, K., and Bock, K.: Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags. Microelectron. Reliab. 54, 1643 (2014).CrossRefGoogle Scholar
33. Heljo, P., Lilja, K.E., Majumdar, H.S., and Lupo, D.: High rectifier output voltages with printed organic charge pump circuit. Org. Electron. 15, 306 (2014).Google Scholar
34. Heljo, P.S., Schmidt, C., Klengel, R., Majumdar, H.S., and Lupo, D.: Electrical and thermal analysis of frequency dependent filamentary switching in printed rectifying diodes. Org. Electron. 20, 69 (2015).CrossRefGoogle Scholar
35. Semple, J., Rossbauer, S., Burgess, C.H., Zhao, K., Jagadamma, L.K., Amassian, A., McLachlan, M.A., and Anthopoulos, T.D.: Radio frequency coplanar ZnO Schottky nanodiodes processed from solution on plastic substrates. Small 12, 1993 (2016).Google Scholar
36. Pal, B.N., Sun, J., Jung, B.J., Choi, E., Andreou, A.G., and Katz, H.E.: Pentacene-zinc oxide vertical diode with compatible grains and 15-MHz rectification. Adv. Mater. 20, 1023 (2008).Google Scholar
37. Sun, J., Pal, B.N., Jung, B.J., and Katz, H.E.: Solution-processed hybrid p–n junction vertical diode. Org. Electron. 10, 1 (2009).Google Scholar
38. Lee, K.H., Park, A., Im, S., Park, Y., Kim, S.H., Sung, M.M., and Lee, S.: Advantageous reverse recovery behavior of pentacene/ZnO diode. Electrochem. Solid-State Lett. 13, H261 (2010).Google Scholar
39. Liem, H., Choy, H.S., and Yung, K.C.: A prerequisite to achieving high performance polymer/inorganic thin film diodes. Solid State Commun. 150, 1725 (2010).Google Scholar
40. Kleemann, H., Schumann, S., Jörges, U., Ellinger, F., Leo, K., and Lüssem, B.: Organic pin-diodes approaching ultra-high-frequencies. Org. Electron. 13, 1114 (2012).CrossRefGoogle Scholar
41. Ali, S., Bae, J., and Lee, C.H.: Organic diode with high rectification ratio made of electrohydrodynamic printed organic layers. Electron. Mater. Lett. 12, 270 (2016).Google Scholar
42. Majewski, L.A., Balocco, C., King, R., Whitelegg, S., and Song, A.M.: Fast polymer nanorectifiers for inductively coupled RFID tags. Mater. Sci. Eng. B 147, 289 (2008).Google Scholar
43. Majewski, L.A. and Song, A.M.: 20 megahertz operation of organic nanodiodes. Phys. Status Solidi B, Basic Solid State Phys. 253, 1507 (2016).CrossRefGoogle Scholar
44. Steudel, S., De Vusser, S., Myny, K., Lenes, M., Genoe, J., and Heremans, P.: Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. J. Appl. Phys. 99, 114519 (2006).Google Scholar
45. Lee, D.-H., Kim, J.-M., Lee, J., and Kim, Y.: Improved organic rectifier using polymethyl-methacrylate-poly 4-vinylphenol double layer. Micro Nano Lett. 6, 567 (2011).CrossRefGoogle Scholar
46. Uno, M., Kanaoka, Y., Cha, B.-S., Isahaya, N., Sakai, M., Matsui, H., Mitsui, C., Okamoto, T., Takeya, J., Kato, T., Katayama, M., Usami, Y., and Yamakami, T.: Short-channel solution-processed organic semiconductor transistors and their application in high-speed organic complementary circuits and organic rectifiers. Adv. Electron. Mater. 1, 1500178 (2015).Google Scholar
47. Uno, M., Cha, B.-S., Kanaoka, Y., and Takeya, J.: High-speed organic transistors with three-dimensional organic channels and organic rectifiers based on them operating above 20MHz. Org. Electron. 20, 119 (2015).CrossRefGoogle Scholar
48. Fischer, A., Scholz, R., Leo, K., and Lüssem, B.: An all C60 vertical transistor for high frequency and high current density applications. Appl. Phys. Lett. 101, 213303 (2012).Google Scholar
49. Chasin, A., Nag, M., Bhoolokam, A., Myny, K., Steudel, S., Schols, S., Genoe, J., Gielen, G., and Heremans, P.: Gigahertz operation of a-IGZO schottky diodes. IEEE Trans. Electron Devices 60, 3407 (2013).Google Scholar
50. Sani, N., Robertsson, M., Cooper, P., Wang, X., Svensson, M., Andersson Ersman, P., Norberg, P., Nilsson, M., Nilsson, D., Liu, X., Hesselbom, H., Akesso, L., Fahlman, M., Crispin, X., Engquist, I., Berggren, M., and Gustafsson, G.: All-printed diode operating at 1.6 GHz. Proc. Natl. Acad. Sci. U.S.A. 111, 11943 (2014).Google Scholar
51. Zhang, J., Li, Y., Zhang, B., Wang, H., Xin, Q., and Song, A.: Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz. Nat. Commun. 6, 7561 (2015).Google Scholar
52. Zhang, J., Wang, H., Wilson, J., Ma, X., Jin, J., and Song, A.: Room temperature processed ultrahigh-frequency indium-gallium-zinc-oxide schottky diode. IEEE Electron Device Lett. 37, 389 (2016).Google Scholar
53. Chen, W.-C., Hsu, P.-C., Chien, C.-W., Chang, K.-M., Hsu, C.-J., Chang, C.-H., Lee, W.-K., Chou, W.-F., Hsieh, H.-H., and Wu, C.-C.: Room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes and high-frequency diode rectifiers. J. Phys. D: Appl. Phys. 47, 365101 (2014).Google Scholar
54. Irshaid, M.Y., Balocco, C., Luo, Y., Bao, P., Brox-Nilsen, C., and Song, A.M.: Zinc-oxide-based planar nanodiodes operating at 50 MHz. Appl. Phys. Lett. 99, 092101 (2011).Google Scholar
55. Diao, L., Frisbie, C.D., Schroepfer, D.D., and Paul Ruden, P.: Electrical characterization of metal/pentacene contacts. J. Appl. Phys. 101, 014510 (2007).Google Scholar
56. Koch, N., Kahn, A., Ghijsen, J., Pireaux, J.-J., Schwartz, J., Johnson, R.L., and Elschner, A.: Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl. Phys. Lett. 82, 70 (2003).Google Scholar
57. Ishii, H., Sugiyama, K., Ito, E., and Seki, K.: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605 (1999).Google Scholar
58. Ma, L., Ouyang, J., and Yang, Y.: High-speed and high-current density C60 diodes. Appl. Phys. Lett. 84, 4786 (2004).Google Scholar
59. Lilja, K.E., Majumdar, H.S., Pettersson, F.S., Österbacka, R., and Joutsenoja, T.: Enhanced performance of printed organic diodes using a thin interfacial barrier layer. ACS Appl. Mater. Interfaces 3, 7 (2011).Google Scholar
60. Pandey, R.K., Mishra, R., Tiwari, P., and Prakash, R.: Interface engineering for enhancement in performance of organic/inorganic hybrid heterojunction diode. Org. Electron. 45, 26 (2017).Google Scholar
61. Don Park, Y., Lim, J.A., Lee, H.S., and Cho, K.: Interface engineering in organic transistors. Mater. Today 10, 46 (2007).Google Scholar
62. Di, C., Liu, Y., Yu, G., Zhu, D., Di, D.Z.C., Liu, Y., Yu, G., Di, C., Liu, Y., Yu, G., and Zhu, D.: Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 42, 1573 (2009).Google Scholar
63. Liu, C., Xu, Y., and Noh, Y.Y.: Contact engineering in organic field-effect transistors. Mater. Today 18, 79 (2015).Google Scholar
64. Ishii, H., Hayashi, N., Ito, E., Washizu, Y., Sugi, K., Kimura, Y., Niwano, M., Ouchi, Y., and Seki, K.: Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment. Phys. Status Solidi 201, 1075 (2004).Google Scholar
65. Cheung, S.K. and Cheung, N.W.: Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49, 85 (1986).Google Scholar
66. Mikhelashvili, V., Eisenstein, G., and Uzdin, R.: Extraction of Schottky diode parameters with a bias dependent barrier height. Solid State Electron. 45, 143 (2001).Google Scholar
67. Sworakowski, J. and Pigoń, K.: Trap distribution and space-charge limited currents in organic crystals. J. Phys. Chem. Solids 30, 491 (1969).Google Scholar
68. de Bruyn, P., van Rest, A.H.P., Wetzelaer, G.A.H., de Leeuw, D.M., and Blom, P.W.M.: Diffusion-limited current in organic metal-insulator-metal diodes. Phys. Rev. Lett. 111, 186801 (2013).Google Scholar
69. Kleemann, H., Gutierrez, R., Avdoshenko, S., Cuniberti, G., Leo, K., and Lüssem, B.: Reverse breakdown behavior in organic pin-diodes comprising C60 and pentacene: experiment and theory. Org. Electron. 14, 193 (2013).Google Scholar
70. Chan, M.Y., Lai, S.L., Fung, M.K., Tong, S.W., Lee, C.S., and Lee, S.T.: Efficient CsF/Yb/Ag cathodes for organic light-emitting devices. Appl. Phys. Lett. 82, 1784 (2003).Google Scholar
71. Campbell, I.H., Rubin, S., Zawodzinski, T.A., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., and Ferraris, J.P.: Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 54, R14321 (1996).Google Scholar
72. Campbell, I.H., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., and Ferraris, J.P.: Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl. Phys. Lett. 71, 3528 (1997).Google Scholar
73. Kwon, J., Seol, Y.G., Lee, N.-E., and Chung, I.: Study on Ohmic contact improvement of organic Schottky diode utilizing self-assembled monolayer and PEDOT:PSS layers. J. Vac. Sci. Technol. A 28, 879 (2010).CrossRefGoogle Scholar
74. Koch, N., Elschner, A., Schwartz, J., and Kahn, A.: Organic molecular films on gold versus conducting polymer: influence of injection barrier height and morphology on current–voltage characteristics. Appl. Phys. Lett. 82, 2281 (2003).CrossRefGoogle Scholar
75. Heywang, G. and Jonas, F.: Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater. 4, 116 (1992).Google Scholar
76. Kido, J. and Matsumoto, T.: Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl. Phys. Lett. 73, 2866 (1998).Google Scholar
77. Zhou, X., Pfeiffer, M., Blochwitz, J., Werner, A., Nollau, A., Fritz, T., and Leo, K.: Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl. Phys. Lett. 78, 410 (2001).Google Scholar
78. Chen, S.-F. and Wang, C.-W.: Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes. Appl. Phys. Lett. 85, 765 (2004).Google Scholar
79. Tokito, S., Noda, K., and Taga, Y.: Metal oxides as a hole-injecting layer for an organic electroluminescent device. J. Phys. D, Appl. Phys. 29, 2750 (1996).Google Scholar
80. Matsuhisa, N., Sakamoto, H., Yokota, T., Zalar, P., Reuveny, A., Lee, S., and Someya, T.: A mechanically durable and flexible organic rectifying diode with a polyethylenimine ethoxylated cathode. Adv. Electron. Mater. 2, 1600259 (2016).Google Scholar
81. Mezour, M.A., Voznyy, O., Sargent, E.H., Lennox, R.B., and Perepichka, D.F.: Controlling C60 organization through dipole-induced band alignment at self-assembled monolayer interfaces. Chem. Mater. 28, 8322 (2016).Google Scholar
82. Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., and Kahn, A.: Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301 (2009).CrossRefGoogle Scholar
83. Yu, H.Y., Feng, X.D., Grozea, D., Lu, Z.H., Sodhi, R.N.S., Hor, A.-M., and Aziz, H.: Surface electronic structure of plasma-treated indium tin oxides. Appl. Phys. Lett. 78, 2595 (2001).Google Scholar
84. Ueda, Y., Abe, J., Murata, H., Gotoh, Y., and Sakai, O.: Control of work function of indium tin oxide: A surface treatment by atmospheric-pressure plasma layer on fabric-type electrodes. Jpn. J. Appl. Phys. 53, 03DG03 (2014).Google Scholar
85. Jia, Z., Lee, V.W., Kymissis, I., Floreano, L., Verdini, A., Cossaro, A., and Morgante, A.: In situ study of pentacene interaction with archetypal hybrid contacts: Fluorinated versus alkane thiols on gold. Phys. Rev. B 82, 125457 (2010).Google Scholar
86. Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Bredas, J.-L., Marder, S.R., Kahn, A., and Kippelen, B.: A universal method to produce low-work function electrodes for organic electronics. Science 336, 327 (2012).Google Scholar
87. Käfer, D., Ruppel, L., and Witte, G.: Growth of pentacene on clean and modified gold surfaces. Phys. Rev. B 75, 085309 (2007).Google Scholar
88. Hu, W.S., Tao, Y.T., Hsu, Y.J., Wei, D.H., and Wu, Y.S.: Molecular orientation of evaporated pentacene films on gold: Alignment effect of self-assembled monolayer. Langmuir 21, 2260 (2005).Google Scholar
89. Kim, G., Kang, S.-J., Dutta, G.K., Han, Y.-K., Shin, T.J., Noh, Y.-Y., and Yang, C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 9477 (2014).CrossRefGoogle Scholar
90. Luo, C., Kyaw, K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764 (2014).Google Scholar
91. Kang, I., Yun, H.J., Chung, D.S., Kwon, S.K., and Kim, Y.H.: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896 (2013).Google Scholar
92. Lee, J., Han, A.R., Yu, H., Shin, T.J., Yang, C., and Oh, J.H.: Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 9540 (2013).Google Scholar
93. Skrypnychuk, V., Boulanger, N., Yu, V., Hilke, M., Mannsfeld, S.C.B., Toney, M.F., and Barbero, D.R.: Enhanced vertical charge transport in a semiconducting p3ht thin film on single layer graphene. Adv. Funct. Mater. 25, 664 (2015).Google Scholar
94. Skrypnychuk, V., Wetzelaer, G.J.A.H., Gordiichuk, P.I., Mannsfeld, S.C.B., Herrmann, A., Toney, M.F., and Barbero, D.R.: Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment. Adv. Mater. 28, 2359 (2016).Google Scholar
95. Farag, A.A.M. and Yahia, I.S.: Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synth. Met. 161, 32 (2011).Google Scholar
96. Katsia, E., Huby, N., Tallarida, G., Kutrzeba-Kotowska, B., Perego, M., Ferrari, S., Krebs, F.C., Guziewicz, E., Godlewski, M., Osinniy, V., and Luka, G.: Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Appl. Phys. Lett. 94, 143501 (2009).Google Scholar
97. He, S.J., White, R., Wang, D.K., Zhang, J., Jiang, N., and Lu, Z.H.: A simple organic diode structure with strong rectifying characteristics. Org. Electron. 15, 3370 (2014).Google Scholar