Published online by Cambridge University Press: 20 December 2019
A hybrid graphene–gold nanomesh, realized through Au deposition on a patterned graphene nanomesh with a focused ion beam, is introduced and illustrated for enhanced light absorption in the visible spectrum. Numerical studies reveal that the hybrid nanomesh with dual resonances in the visible spectrum exhibit ~50% light absorption and enhancement factor as high as ~1 × 108. The simulations also show that the enhanced optical absorption is associated with the excitation of surface plasmons. This is confirmed through the localization of electric fields at the resonant wavelengths. Such a hybrid graphene–gold nanomesh exhibiting enhanced light-matter interactions paves the way toward plasmonics, surface-enhanced Raman scattering applications, etc.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.