Published online by Cambridge University Press: 14 September 2017
The theories to describe the rate at which electrochemical reactions proceed do not consider explicitly the dimensionality or the occupancy of the energy levels of nanostructured electrodes. It is shown here that the density of states variation in nanoscale electrochemical systems yield novel modulations in the rate constant and concomitant electrical currents. The proposed models extend the utility of presently used Marcus–Hush–Chidsey kinetics to a larger class of materials and could be used as a test of dimensional character. The new models are applied to explain the experimental variation of the electrochemical rate constant of single-layer graphene.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.