Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T12:00:03.814Z Has data issue: false hasContentIssue false

Domain structures and magnetoelectric effects in multiferroic nanostructures

Published online by Cambridge University Press:  13 September 2016

Deyang Chen
Affiliation:
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China
Xingsen Gao*
Affiliation:
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China
Jun-Ming Liu*
Affiliation:
Laboratory of Solid State Microstructures, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
*
Address all correspondence to Xingsen Gao, Jun-Ming Liu at xingsengao@scnu.edu.cn; liujm@nju.edu.cn
Address all correspondence to Xingsen Gao, Jun-Ming Liu at xingsengao@scnu.edu.cn; liujm@nju.edu.cn
Get access

Abstract

Multiferroic nanostructures have been attracting tremendous attention not only for novel phenomena associated with fundamental physics, but also due to exciting application potentials in future nanoelectronic devices. In this mini-review, we first introduce several fabrication techniques recently developed for single phase and composite multiferroic nanostructures. Then, the topologic vortex domain structures in various ferroic nanostructures, which may bring about additional fundamental discoveries and applications in ultrahigh density recording, are discussed. Particular attention is paid to magnetoelectric effects in multiferroic nanodots, including room temperature electric field induced magnetic domain switching. Finally, existing challenges and new directions, e.g., cross-couplings among multiple functionalities, are prospected. We genuinely hope that this mini-review will arouse the readers' interest in this fascinating field.

Type
Functional Oxides Prospective Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
2. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).CrossRefGoogle ScholarPubMed
3. Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).CrossRefGoogle ScholarPubMed
4. Tokura, Y.: Multiferroics-toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145 (2007).CrossRefGoogle Scholar
5. Tokura, Y. and Seki, S.: Multiferroics with spiral spin orders. Adv. Mater. 22, 1554 (2010).CrossRefGoogle ScholarPubMed
6. Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
7. Wang, K.F., Liu, J.M., and Ren, Z.F.: Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321 (2009).CrossRefGoogle Scholar
8. Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
9. Dong, S., Liu, J.-M., Cheong, S.-W., and Ren, Z.: Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519 (2015).Google Scholar
10. Spaldin, N.A., Cheong, S.-W., and Ramesh, R.: Multiferroics: past, present, and future. Phys. Today 63, 38 (2010).Google Scholar
11. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
12. Ratcliff, W., Lynn, J.W., Kiryukhin, V., Jain, P., and Fitzsimmons, M.R.: Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. NPJ Quantum Mater. 1, 16003 (2016).Google Scholar
13. Han, H., Kim, Y., Alexe, M., Hesse, D., and Lee, W.: Nanostructured ferroelectrics: fabrication and structure-property relations. Adv. Mater. 23, 4599 (2011).Google Scholar
14. Jung, I. and Son, J.Y.: Dip-Pen Lithography of BiFeO3 nanodots. J. Am. Ceram. Soc. 95, 3716 (2012).CrossRefGoogle Scholar
15. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., and Ono, T.: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000).Google Scholar
16. Van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fahnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H., and Schutz, G.: Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461 (2006).Google Scholar
17. Yamada, K., Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H., Thiaville, A., and Ono, T.: Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 269 (2007).CrossRefGoogle Scholar
18. Naumov, I.I., Bellaiche, L., and Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).Google Scholar
19. Lu, X., Kim, Y., Goetze, S., Li, X., Dong, S., Werner, P., Alexe, M., and Hesse, D.: Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 nanodots. Nano Lett. 11, 3202 (2011).Google Scholar
20. Tian, G., Zhang, F.Y., Yao, J.X., Fan, H., Li, P.L., Li, Z.W., Song, X., Zhang, X.Y., Qin, M.H., Zeng, M., Zhang, Z., Yao, J.J., Gao, X.S., and Liu, J.M.: Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10, 1025 (2016).CrossRefGoogle ScholarPubMed
21. Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., Ralph, D.C., Schlom, D.G., Iniguez, J., Huey, B.D., and Ramesh, R.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014).Google Scholar
22. Guo, R., You, L., Zhou, Y., Shiuh Lim, Z., Zou, X., Chen, L., Ramesh, R., and Wang, J.: Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013).Google Scholar
23. Liu, H.J., Chen, L.Y., He, Q., Liang, C.W., Chen, Y.Z., Chien, Y.S., Hsieh, Y.H., Lin, S.J., Arenholz, E., Luo, C.W., Chueh, Y.L., Chen, Y.C., and Chu, Y.H.: Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).Google Scholar
24. Lipatov, A., Sharma, P., Gruverman, A., and Sinitskii, A.: Optoelectrical molybdenum disulfide (MoS2)-ferroelectric memories. ACS Nano 9, 8089 (2015).Google Scholar
25. Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., Mougin, A., Ünal, A.A., Kronast, F., Valencia, S., Dkhil, B., Barthélémy, A., and Bibes, M.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).Google Scholar
26. Li, J.H., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).Google Scholar
27. Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L., Hao, D., and Ramesh, R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).Google Scholar
28. Wang, Y., Hu, J.M., Lin, Y.H., and Nan, C.W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).Google Scholar
29. Miao, Q., Zeng, M., Zhang, Z., Lu, X., Dai, J., Gao, X., and Liu, J.-M.: Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. Appl. Phys. Lett. 104, 182903 (2014).Google Scholar
30. Zhang, F.Y., Miao, Q., Tian, G., Lu, Z.X., Zhao, L.N., Fan, H., Song, X., Li, Z.W., Zeng, M., Gao, X.S., and Liu, J.M.: Unique nano-domain structures in self-assembled BiFeO3 and Pb(Zr,Ti)O3 ferroelectric nanocapacitors. Nanotechnology 27, 015703 (2016).Google Scholar
31. Ma, J., Hu, J., Li, Z., and Nan, C.-W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062 (2011).Google Scholar
32. Liu, H.J., Liang, W.I., Chu, Y.H., Zheng, H.M., and Ramesh, R.: Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Commun. 4, 31 (2014).CrossRefGoogle Scholar
33. Vaz, C.A.F., Hoffman, J., Ahn, C.H., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).CrossRefGoogle ScholarPubMed
34. Zhao, L.N., Lu, Z.X., Zhang, F.Y., Tian, G., Song, X., Li, Z.W., Huang, K.R., Zhang, Z., Qin, M.H., Wu, S.J., Lu, X.B., Zeng, M., Gao, X.S., Dai, J.Y., and Liu, J.M.: Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci. Rep. 5, 9680 (2015).CrossRefGoogle ScholarPubMed
35. Gao, X.S., Rodriguez, B.J., Liu, L.F., Birajdar, B., Pantel, D., Ziese, M., Alexe, M., and Hesse, D.: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4, 1099 (2010).CrossRefGoogle Scholar
36. Cho, K., Loget, G., and Corn, R.M.: Lithographically patterned nanoscale electrodeposition of plasmonic, bimetallic, semiconductor, magnetic, and polymer nanoring arrays. J. Phys. Chem. C 118, 28993 (2014).Google Scholar
37. Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).Google Scholar
38. Ortega, N., Ashok, K., Scott, J.F., and Ram, S.K.: Multifunctional magnetoelectric materials for device applications. J. Phys.—Condens. Mater. 27, 504002 (2015).Google Scholar
39. Tian, G., Zhao, L., Lu, Z., Yao, J., Fan, H., Li, Z., Li, P., Chen, D., Zhang, X., Qin, M., Zeng, M., Zhang, Z., Dai, J., Gao, X., and Liu, J.-M.: Fabrication of periodically ordered BiFeO3 nanostructured arrays by template-assisted ion beam etching method. Under review.Google Scholar
40. Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).Google Scholar
41. Gao, X.S., Xue, F., Qin, M.H., Liu, J.M., Rodriguez, B.J., Liu, L.F., Alexe, M., and Hesse, D.: Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays. J. Appl. Phys. 110, 052006 (2011).Google Scholar
42. Landau, L.D. and Lifschitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. J. Sowjetunion 8, 153 (1935).Google Scholar
43. Kittel, C.: Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies. Phys. Rev. 70, 281 (1946).CrossRefGoogle Scholar
44. Guslienko, K.Y., Han, X.F., Keavney, D.J., Divan, R., and Bader, S.D.: Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys. Rev. Lett. 96, 067205 (2006).Google Scholar
45. Seki, S., Yu, X.Z., Ishiwata, S., and Tokura, Y.: Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).Google Scholar
46. Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., and Gregg, J.M.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).Google Scholar
47. Gruverman, A., Wu, D., Fan, H.J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.—Condens. Mater. 20, 342201 (2008).CrossRefGoogle Scholar
48. Yadav, A.K., Nelson, C.T., Hsu, S.L., Hong, Z., Clarkson, J.D., Schlepuetz, C.M., Damodaran, A.R., Shafer, P., Arenholz, E., Dedon, L.R., Chen, D., Vishwanath, A., Minor, A.M., Chen, L.Q., Scott, J.F., Martin, L.W., and Ramesh, R.: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).Google Scholar
49. Naumov, I. and Fu, H.: Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).Google Scholar
50. Wu, Z., Huang, N., Liu, Z., Wu, J., Duan, W., and Gu, B.-L.: Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films. J. Appl. Phys. 101, 014112 (2007).CrossRefGoogle Scholar
51. Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).Google Scholar
52. Li, J., Li, J.-F., Yu, Q., Chen, Q.N., and Xie, S.: Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems. J. Materiomics 1, 3 (2015).Google Scholar
53. Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.H., Eom, C.B., Schlom, D.G., Chen, L.Q., and Pan, X.Q.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).Google Scholar
54. Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420 (2011).Google Scholar
55. McGilly, L.J., Schilling, A., and Gregg, J.M.: Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200 (2010).Google Scholar
56. McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M.: Mesoscale flux-closure domain formation in single-crystal BaTiO3 . Nat. Commun. 2, 404 (2011).Google Scholar
57. Tang, Y.L., Zhu, Y.L., Ma, X.L., Borisevich, A.Y., Morozovska, A.N., Eliseev, E.A., Wang, W.Y., Wang, Y.J., Xu, Y.B., Zhang, Z.D., and Pennycook, S.J.: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).CrossRefGoogle ScholarPubMed
58. Chu, Y.-H., Martin, L.W., Holcomb, M.B., and Ramesh, R.: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).Google Scholar
59. Vaz, C.A.F.: Electric field control of magnetism in multiferroic heterostructures. J. Phys—Condens. Mater. 24, 33 (2012).CrossRefGoogle ScholarPubMed
60. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., and Nan, C.W.: Full 180 degrees magnetization reversal with electric fields. Sci. Rep. 6, 07507 (2016).Google Scholar
61. Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., and Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).Google Scholar
62. Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Shu Jen, H., Qing, H., Balke, N., Chan Ho, Y., Lee, D., Wei, H., Qian, Z., Pei Ung, Y., Rodriguez, A.F., Scholl, A., Wang, S.X., and Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).Google Scholar
63. Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., and Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).Google Scholar
64. Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., and Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).Google Scholar
65. Wu, S.M., Cybart, S.A., Yi, D., Parker, J.M., Ramesh, R., and Dynes, R.C.: Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013).Google Scholar
66. Martin, L.W., Chu, Y.-H., Zhan, Q., Ramesh, R., Han, S.-J., Wang, S.X., Warusawithana, M., and Schlom, D.G.: Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl. Phys. Lett. 91, 172513 (2007).Google Scholar
67. Martin, L.W., Chu, Y.-H., Holcomb, M.B., Huijben, M., Yu, P., Han, S.-J., Lee, D., Wang, S.X., and Ramesh, R.: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).Google Scholar
68. Allibe, J., Fusil, S., Bouzehouane, K., Daumont, C., Sando, D., Jacquet, E., Deranlot, C., Bibes, M., and Barthélémy, A.: Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3 . Nano Lett. 12, 1141 (2012).Google Scholar
69. Bea, H., Bibes, M., Ott, F., Dupe, B., Zhu, X.H., Petit, S., Fusil, S., Deranlot, C., Bouzehouane, K., and Barthelemy, A.: Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).Google Scholar
70. Liu, F., Zhou, Y., Wang, Y.J., Liu, X.Y., Wang, J., and Guo, H.: Negative capacitance transistors with monolayer black phosphorus. NPJ Quantum Mater. 1, 16004 (2016).Google Scholar