Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T11:46:50.814Z Has data issue: false hasContentIssue false

Bismuth doping on CuGaS2 thin films: structural and optical properties

Published online by Cambridge University Press:  16 April 2018

Marcos A. S. Andrade Jr.*
Affiliation:
Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905, São Carlos-SP, Brazil
Lucia H. Mascaro
Affiliation:
Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905, São Carlos-SP, Brazil
*
Address all correspondence to Marcos A. S. Andrade at marcos_asaj@hotmail.com
Get access

Abstract

In this work, we present a solvothermal method to prepare bismuth (Bi)-doped CuGaS2 chalcopyrite nanocrystals ink and apply it to an all-solution-processed approach for the preparation of films with a thickness of approximately 730 nm and with enhanced optical properties and lower band gap energy than the undoped semiconductor films. The low-cost deposition method is comprised by spray deposition of the chalcogenide nanocrystals ink onto the molybdenum substrates, producing microcrystalline films with grains larger than 400 nm originated from coalescence of Bi-doped nanocrystals. Bi-doped CuGaS2 microcrystalline films are a good candidate to be applied as an absorber layer in thin-film solar cells.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Friedlmeier, T.M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Menner, R., Wuerz, R., and Powalla, M.: High-efficiency Cu(In,Ga)Se2 solar cells. Thin Solid Films 633, 13 (2016).CrossRefGoogle Scholar
2.van Deelen, J., and Frijters, C.: CIGS cells with metallized front contact: longer cells and higher efficiency. Sol. Energy 143, 93 (2017).CrossRefGoogle Scholar
3.Lu, Z., Jin, R., Liu, Y., Guo, L., Liu, X., Liu, J., Cheng, K., and Du, Z.: Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53 (2017).CrossRefGoogle Scholar
4.Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43 (2013).CrossRefGoogle Scholar
5.Ramanujam, J., and Singh, U.P.: Copper indium gallium selenide based solar cells – review. Energy Environ. Sci. 10, 1306 (2017).CrossRefGoogle Scholar
6.Lee, T.D., and Ebong, A.U.: a review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286 (2017).CrossRefGoogle Scholar
7.Han, M., Zhang, X., Zhang, Y., and Zeng, Z.: The group VA element non-compensated n–p codoping in CuGaS2 for intermediate band materials. Sol. Energy Mater. Sol. Cells 144, 664 (2016).CrossRefGoogle Scholar
8.Jing, W., Wang, Y., Zhu, J., Yao, W., and Song, S.: Effects of Ti-doping on CuGaS2 thin films by co-sputtering and sulfurizing. Mater. Lett. 164, 513 (2016).CrossRefGoogle Scholar
9.Armaroli, N., and Balzani, V.: Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. A Eur. J. 22, 32 (2015).CrossRefGoogle ScholarPubMed
10.Lv, X., Yang, S., Li, M., Li, H., Yi, J., Wang, M., Niu, G., and Zhong, J.: Investigation of a novel intermediate band photovoltaic material with wide spectrum solar absorption based on Ti-substituted CuGaS2. Sol. Energy 103, 480 (2014).CrossRefGoogle Scholar
11.Chen, P., Qin, M., Chen, H., Yang, C., Wang, Y., and Huang, F.: Cr incorporation in CuGaS2 chalcopyrite: a new intermediate-band photovoltaic material with wide-spectrum solar absorption. Phys. Stat. Solidi Appl. Mater. Sci. 210, 1098 (2013).Google Scholar
12.Xiao, L., Zhu, J., Ding, T., Wang, Y., Fan, Y., and Bo, Q.: Synthesis and characterization of Ce-incorporated CuInS2 chalcopyrites. Mater. Lett. 159, 392 (2015).CrossRefGoogle Scholar
13.Koskelo, J., Hashemi, J., Huotari, S., and Hakala, M.: First-principles analysis of the intermediate band in CuGa1−xFexS2. Phys. Rev. B 93, 165204 (2016).CrossRefGoogle Scholar
14.Han, M.M., Zhang, X.L., and Zeng, Z.: Sn doping induced intermediate band in CuGaS2. RSC Adv. 6, 110511 (2016).CrossRefGoogle Scholar
15.Jeong, W., and Park, G.: Structural and electrical properties of CuGaS thin films by electron beam evaporation. Sol. Energy Mater. Sol. Cells 75, 93 (2003).CrossRefGoogle Scholar
16.Kim, S.K., Park, J.P., Kim, M.K., Ok, K.M., and Shim, I.W.: Preparation of CuGaS2 thin films by two-stage MOCVD method. Sol. Energy Mater. Sol. Cells 92, 1311 (2008).CrossRefGoogle Scholar
17.Hollingsworth, J.A., Banger, K.K., Jin, M.H.C., Harris, J.D., Cowen, J.E., Bohannan, E.W., Switzer, J.A., Buhro, W.E., and Hepp, A.F.: Single source precursors for fabrication of I-III-VI2 thin-film solar cells via spray CVD. Thin Solid Films 431–432, 63 (2003).CrossRefGoogle Scholar
18.Chang, S.-H., Chiu, B.-C., Gao, T.-L., Jheng, S.-L., and Tuan, H.-Y.: Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies. CrystEngComm 16, 3323 (2014).CrossRefGoogle Scholar
19.Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragán, F., and Alvarez, S.: Covalent radii revisited. Dalt. Trans. No. 21, 2832 (2008).CrossRefGoogle Scholar
20.Guijarro, N., Prevot, M.S., Yu, X., Jeanbourquin, X.A., Bornoz, P., Bourée, W., Johnson, M., Le Formal, F., and Sivula, K.: A bottom-up approach toward all-solution-processed high-efficiency Cu(In,Ga)S2 photocathodes for solar water splitting. Adv. Energy Mater. 6, 1 (2016).CrossRefGoogle Scholar
21.Zhang, Y., Ye, Q., Liu, J., Chen, H., He, X., Liao, C., Han, J., Wang, H., Mei, J., and Lau, W.: Earth-abundant and low-cost CZTS solar cell on flexible molybdenum foil. RSC Adv. 4, 23666 (2014).CrossRefGoogle Scholar
22.Moreno, R., Ramirez, E.A., and Gordillo Guzmán, G.: Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis. J. Phys. Conf. Ser. 687, 012041 (2016).CrossRefGoogle Scholar
23.Lee, W.P.C., Tan, L.L., Sumathi, S., and Chai, S.P.: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting. Int. J. Hydrog. Energy 43, 748 (2017).CrossRefGoogle Scholar
24.Li, M., Zhao, R., Su, Y., Hu, J., Yang, Z., and Zhang, Y.: Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 203, 715 (2017).CrossRefGoogle Scholar
25.Subbaramaiah, K., and Raja, V. S.: Chemical spray deposition of CuGaS2 thin films. Proc. SPIE 1523, 555 (1992).CrossRefGoogle Scholar
26.Ullah, S., Ullah, H., Bouhjar, F., Mollar, M., and Marí, B.: Synthesis of in-gap band CuGaS2: Cr absorbers and numerical assessment of their performance in solar cells. Sol. Energy Mater. Sol. Cells 180, 322 (2017).CrossRefGoogle Scholar
27.Strandberg, R., and Aguilera, I.: Evaluation of vanadium substituted In2S3 as a material for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 98, 88 (2012).CrossRefGoogle Scholar
28.Ahsan, T., Kalainathan, S., Miyashita, N., Hoshii, T., Okada, Y., Ahsan, T., Kalainathan, S., Miyashita, N., Hoshii, T., and Characterization, Y.O.: Characterization of Cr doped CuGaS2 thin films synthesized by chemical spray pyrolysis. Mech. Mater. Sci. Eng. MMSE J. Open Access 9, 380 (2017).Google Scholar
29.Han, M., Zhang, X., and Zeng, Z.: The investigation of transition metal doped CuGaS2 for promising intermediate band materials. RSC Adv. 4, 62380 (2014).CrossRefGoogle Scholar
30.Aksenov, I., Kudo, Y., and Sato, K.: Optical absorption spectra in CuAlS2 doped with vanadium. Jpn. J. Appl. Phys. 1359, L145 (1992).CrossRefGoogle Scholar