Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T14:31:23.823Z Has data issue: false hasContentIssue false

Biosensing using photonic crystal nanolasers

Published online by Cambridge University Press:  25 November 2015

Toshihiko Baba*
Affiliation:
Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
*
Address all correspondence to Toshihiko Baba atbaba@ynu.ac.jp
Get access

Abstract

Photonic crystal nanolasers are fabricated and operated simply, and can be applied as disposable sensors for biomedical applications. They are sensitive to the change with environmental index and surface charge. Functionalizing the nanolaser surface with an antibody, the specific binding of target antigen is detected with a detection limit 2–4 orders lower than that achieved by current standard methods, enzyme-linked immuno-sorbent assay. Nanolasers also detect negatively-charged deoxyribonucleic acid from their emission intensity. This technique requires neither labels nor spectroscopy, which simplifies screening procedures. Its applicability for high-speed detection of endotoxin and for label-fee imaging of living cells are also demonstrated.

Type
Plasmonics, Photonics, and Metamaterials Prospective Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).Google Scholar
2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
3. Painter, O., Lee, R.K., Scherer, A., Yariv, A., O'Brien, J.D., Dapkus, P.D., and Kim, I.: Two-dimensional photonic band-Gap defect mode laser. Science 284, 1819 (1999).Google Scholar
4. Nozaki, K., Kita, S., and Baba, T.: Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506 (2007).CrossRefGoogle ScholarPubMed
5. Kita, S., Nozaki, K., Hachuda, S., Watanabe, H., Saito, Y., Otsuka, S., Nakada, T., Arita, Y., and Baba, T.: Photonic crystal point-shift nanolaser with and without nanoslots – design, fabrication, lasing and sensing characteristics. IEEE J. Sel. Top. Quantum Electron. 17, 1632 (2011).Google Scholar
6. Watanabe, K., Hachuda, S., Isono, T., and Baba, T.: Photonic crystal nanolaser sensors with ALD coating; Tech. Dig. CLEO-PR, TuJ2-2 (2013).Google Scholar
7. Narimatsu, M., Kita, S., Abe, H., and Baba, T.: Enhancement of vertical emission in photonic crystal nanolasers. Appl. Phys. Lett. 100, 121117 (2012).Google Scholar
8. Watanabe, T., Abe, H., Nishijima, Y., and Baba, T.: Array integration of thousands of photonic crystal nanolasers. Appl. Phys. Lett. 104, 121108 (2014).Google Scholar
9. Lončar, M., Scherer, A., and Qiu, Y.: Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648 (2003).Google Scholar
10. Kita, S., Nozaki, K., and Baba, T.: Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration. Opt. Express 16, 8174 (2008).Google Scholar
11. Kita, S., Otsuka, S., Hachuda, S., Endo, T., Imai, Y., Nishijima, Y., Misawa, H., and Baba, T.: Super-sensitivity in label-free protein sensing using nanoslot nanolaser. Opt. Express 19, 17683 (2011).CrossRefGoogle ScholarPubMed
12. Hachuda, S., Otsuka, S., Kita, S., Isono, T., Narimatsu, M., Watanabe, K., Goshima, Y., and Baba, T.: Selective detection of sub-atto-molar streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors. Opt. Express 21, 12815 (2013).Google Scholar
13. Watanabe, K., Kishi, Y., Hachuda, S., Watanabe, T., Sakemoto, M., Nishijima, Y., and Baba, T.: Simultaneous detection of refractive index and surface charges in nanolaser biosensors. Appl. Phys. Lett. 106, 021106 (2015).Google Scholar
14. Lequin, R.M.: Enzyme immunoassay (EIA)/ enzyme- linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415 (2005).Google Scholar
15. Hachuda, S., Watanabe, T., Takahashi, D., and Baba, T.: Ultra-sensitive and selective detection of prostate specific antigen beyond ELISA using photonic crystal nanolaser; Tech. Dig. CLEO, AM1J.3 (2015).CrossRefGoogle Scholar
16. Isono, T., Hachuda, S., Watanabe, K., Yamashita, N., Goshima, Y., and Baba, T.: Specific detection of marker protein related with Alzheimer's disease using photonic crystal nanolaser sensor array; Tech. Dig. MRS Annual Meet., K5.09 (2013).Google Scholar
17. Isono, T., Hachuda, S., Watanabe, K., Yamashita, N., Goshima, Y., and Baba, T.: Specific detection of marker protein related with Alzheimer's disease using nanolaser sensor array based on photonic crystal (II); Tech. Dig. JSAP Spring Meet., 19p-E15-10 (2014).Google Scholar
18. Isono, T., Yamashita, N., Obara, M., Araki, T., Nakamura, F., Kamiya, Y., Alkam, T., Nitta, A., Nabeshima, T., Mikoshiba, K., Ohshima, T., and Goshima, Y.: Amyloid-β25–35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neurosci. Res. 77, 180 (2013).Google Scholar
19. Beutler, B. and Rietschel, E.T.: Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169 (2003).Google Scholar
20. Takahashi, D., Hachuda, S., Watanabe, T., Nishijima, Y., and Baba, T.: Detection of endotoxin using a photonic crystal nanolaser. Appl. Phys. Lett. 106, 131112 (2015).CrossRefGoogle Scholar
21. Abe, H., Narimatsu, M., Watanabe, T., Furumoto, T., Yokouchi, Y., Nishijima, Y., Kita, S., Tomitaka, A., Ota, S., Takemura, Y., and Baba, T.: Living-cell imaging using a photonic crystal nanolaser array. Opt. Express 23, 17056 (2015).Google Scholar
22. Lau, W.C., Young, K.T., Baev, A., Hu, R., and Prasad, P.N.: Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt. Express 17, 19041 (2009).Google Scholar
23. Besselink, G.A.J., Kooyman, R.P.H., van Os, P.J., Engbers, G.H.M., and Schasfoorta, R.B.M.: Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen Anal. Biochem. 333, 165 (2004).Google Scholar
24. Grubisha, D.S., Lipert, R.J., Park, H.Y., Driskell, J., and Porter, M.D.: Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936 (2003).Google ScholarPubMed
25. Lee, S.W., Lee, K.S., Ahn, J., Lee, J.J., Kim, M.G., and Shin, Y.B.: Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5, 897 (2011).Google Scholar
26. Vestergaard, M., Kerman, K., Kim, D.K., Hiep, H.M., and Tamiya, E.: 75.Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 74, 1038 (2008).Google Scholar
27. Endo, T., Yamamura, S., Kerman, K., and Tamiya, E.: Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal. Chim. Acta 614, 182 (2008).Google Scholar
28. Armani, A.M., Kulkarni, R.P., Fraser, S.E., Flagan, R.C., and Vahala, K.J.: Label-free, single-molecule detection with optical micro-cavities. Science 317, 783 (2007).Google Scholar
29. De Vos, K., Girones, J., Claes, T., De Koninck, Y., Popelka, S., Schacht, E., Baets, R., and Bienstman, P.: Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE Photon. J. 1, 225 (2009).Google Scholar
30. Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L.H., and Borel, P.I.: Photonic-crystal waveguide biosensor. Opt. Express 15, 3169 (2007).Google Scholar
31. Zlatanovic, S., Mirkarimi, L.W., Sigalas, M.M., Bynum, M.A., Chow, E., Robotti, K.M., Burr, G.W., Esener, S., and Grot, A.: Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Act. B: Chem. 141, 13 (2009).Google Scholar
32. Chakravarty, S., Hosseini, A., Xu, X., Zhu, L., Zou, Y., and Chen, R.T.: Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. Appl. Phys. Lett. 104, 191109 (2014).CrossRefGoogle ScholarPubMed
33. Yang, D., Kita, S., Liang, F., Wang, C., Tian, H., Ji, Y., Lončar, M., and Quan, Q.: High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. 105, 063118 (2014).Google Scholar
34. Kim, J.P., Lee, B.Y., Hong, S., and Sim, S.J.: Ultrasensitive carbon nanotube-based biosensors using antibody-binding gragments. Anal. Biochem. 381, 193 (2008).CrossRefGoogle Scholar
35. Kim, J.P., Lee, B.Y., Lee, J., Hong, S., and Sim, S.J.: Enhancement of sensitivity and specificity by surface modification of carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 3372 (2009).Google Scholar
36. Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., and Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138 (2010).Google Scholar
37. Kim, A., Ah, C.S., Yu, H.Y., Yang, J.H., Baek, I.B., Ahn, C.G., Park, C.W., Jun, M.S., and Lee, S.: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91, 103901 (2007).Google Scholar
38. Lin, T.W., Hsieh, P.J., Lin, C.L., Fang, Y.Y., Yang, J.X., Tsai, C.C., Chiang, P.L., Pan, C.Y., and Chen, Y.T.: Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl. Acad. Sci. U.S.A. 107, 1047 (2010).CrossRefGoogle ScholarPubMed
39. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294 (2005).Google Scholar
40. Stern, E., Klemic, J.F., Routenberg, D.A., Wyremebak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519 (2007).CrossRefGoogle ScholarPubMed