Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T14:42:52.310Z Has data issue: false hasContentIssue false

Bio-inspired responsive polymer pillar arrays

Published online by Cambridge University Press:  22 April 2015

Elaine Lee
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, USA
Shu Yang*
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, USA
*
Address all correspondence to Shu Yang atshuyang@seas.upenn.edu
Get access

Abstract

High-aspect-ratio (HAR) pillar arrays offer large surface area, well-defined surface topography, and large mechanical compliance. In this Prospective, we showcase micro- and nanopillar array systems that exploit the responsiveness and/or harness the mechanical instabilities for myriad surface-mediated applications, including tunable wetting, adhesion, optical properties, and actuation. In each application, we start with biological examples with HAR pillar structures, and discuss strategies to fabricate responsive HAR polymer pillar structures. We then discuss approaches to tune the surface topography, such as via bending, tilting, expansion or contraction, and collapsing of the pillars, and the resulting change of surface and optical properties, and their dynamic actuation. In each system, we discuss the controllability and recoverability of pillar deformation.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ohzono, T., Monobe, H., Shiokawa, K., Fujiwara, M., and Shimizu, Y.: Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries. Soft Matter 5, 4658 (2009).CrossRefGoogle Scholar
2.Haraguchi, K., Li, H.J., Song, L., and Murata, K.: Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly(N-isopropylacrylamide) in polymer-clay nanocomposite gels. Macromolecules 40, 6973 (2007).Google Scholar
3.Kim, J., Yoon, J., and Hayward, R.C.: Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2010).Google Scholar
4.Haraguchi, K. and Takehisa, T.: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
5.Jeong, K.-U., Jang, J.-H., Koh, C.Y., Graham, M.J., Jin, K.-Y., Park, S.-J., Nah, C., Lee, M.-H., Cheng, S.Z.D., and Thomas, E.L.: Colour-tunable spiral photonic actuators. J. Mater. Chem. 19, 1956 (2009).CrossRefGoogle Scholar
6.Lee, C.H., Lim, H.S., Kim, J., and Cho, J.H.: Counterion-induced reversibly switchable transparency in smart windows. ACS Nano 5, 7397 (2011).CrossRefGoogle ScholarPubMed
7.Lee, S.G., Lee, D.Y., Lim, H.S., Lee, D.H., Lee, S., and Cho, K.: Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 22, 5013 (2010).Google Scholar
8.Lin, P.-C., Vajpayee, S., Jagota, A., Hui, C.-Y., and Yang, S.: Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4, 1830 (2008).Google Scholar
9.Dong, L., Agarwal, A.K., Beebe, D.J., and Jiang, H.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551 (2006).CrossRefGoogle ScholarPubMed
10.Gupta, P., Vermani, K., and Garg, S.: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569 (2002).CrossRefGoogle ScholarPubMed
11.Schmaljohann, D.: Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655 (2006).CrossRefGoogle ScholarPubMed
12.Dai, S., Ravi, P., and Tam, K.C.: pH-responsive polymers: synthesis, properties and applications. Soft Matter 4, 435 (2008).CrossRefGoogle ScholarPubMed
13.Zhao, Y. and Ikeda, T.: Smart Light-responsive Materials: Azobenzene-containing Polymers and Liquid Crystals (John Wiley & Sons, Hoboken, New Jersey, 2009).CrossRefGoogle Scholar
14.Ahn, S.-k, Kasi, R.M., Kim, S.-C., Sharma, N., and Zhou, Y.: Stimuli-responsive polymer gels. Soft Matter 4, 1151 (2008).CrossRefGoogle ScholarPubMed
15.Lötters, J., Olthuis, W., Veltink, P., and Bergveld, P.: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).CrossRefGoogle Scholar
16.Warner, M. and Terentjev, E.M.: Liquid Crystal Elastomers (Oxford University Press, New York, 2003).CrossRefGoogle ScholarPubMed
17.Spillmann, C.M., Ratna, B.R., and Naciri, J.: Anisotropic actuation in electroclinic liquid crystal elastomers. Appl. Phys. Lett. 90, 021911 (2007).Google Scholar
18.Rousseau, I.A. and Mather, P.T.: Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300 (2003).Google Scholar
19.Thomsen, D.L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D., and Ratna, B.R.: Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868 (2001).Google Scholar
20.Kloxin, C.J. and Bowman, C.N.: Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161 (2013).Google Scholar
21.Lendlein, A. and Kelch, S.: Shape-memory polymers. Angew. Chem. Inter. Ed. 41, 2034 (2002).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
22.Mather, P.T., Luo, X.F., and Rousseau, I.A.: Shape memory polymer research. Ann. Rev. Mater. Res. 39, 445 (2009).Google Scholar
23.Xie, T.: Tunable polymer multi-shape memory effect. Nature 464, 267 (2010).CrossRefGoogle ScholarPubMed
24.Bellin, I., Kelch, S., Langer, R., and Lendlein, A.: Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 103, 18043 (2006).CrossRefGoogle ScholarPubMed
25.Xie, T., Xiao, X., and Cheng, Y.T.: Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823 (2009).Google Scholar
26.Liu, F. and Urban, M.W.: Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3 (2010).CrossRefGoogle Scholar
27.Stuart, M.A.C., Huck, W.T., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., and Urban, M.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010).CrossRefGoogle ScholarPubMed
28.Roy, D., Cambre, J.N., and Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278 (2010).Google Scholar
29.Bae, W.-G., Kim, H.N., Kim, D., Park, S.-H., Jeong, H.E., and Suh, K.-Y.: 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater. 26, 675 (2014).CrossRefGoogle ScholarPubMed
30.Zhang, J. and Han, Y.: Active and responsive polymer surfaces. Chem. Soc. Rev. 39, 676 (2010).Google Scholar
31.Liu, M., Wang, S., and Jiang, L.: Bioinspired multiscale surfaces with special wettability. MRS Bull. 38, 375 (2013).Google Scholar
32.Hu, Z.B., Chen, Y.Y., Wang, C.J., Zheng, Y.D., and Li, Y.: Polymer gels with engineered environmentally responsive surface patterns. Nature 393, 149 (1998).Google Scholar
33.Cheng, Y.T., Rodak, D., Wong, C., and Hayden, C.: Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17, 1359 (2006).Google Scholar
34.Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 (1997).Google Scholar
35.Neinhuis, C. and Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667 (1997).CrossRefGoogle Scholar
36.Kinoshita, S., Yoshioka, S., and Kawagoe, K.: Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B, Biol. Sci. 269, 1417 (2002).Google Scholar
37.Potyrailo, R.A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J.R., and Olson, E.: Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 1, 123 (2007).CrossRefGoogle Scholar
38.Vukusic, P., Sambles, J., Lawrence, C., and Wootton, R.: Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B, Biol. Sci. 266, 1403 (1999).Google Scholar
39.Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E.: Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275 (2005).Google Scholar
40.Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., and Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. U. S. A. 99, 12252 (2002).Google Scholar
41.Autumn, K. and Peattie, A.M.: Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42, 1081 (2002).CrossRefGoogle ScholarPubMed
42.Chandra, D. and Yang, S.: Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Acc. Chem. Res. 43, 1080 (2010).Google Scholar
43.Zhang, X., Shi, F., Niu, J., Jiang, Y.G., and Wang, Z.Q.: Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621 (2008).Google Scholar
44.Roach, P., Shirtcliffe, N.J., and Newton, M.I.: Progess in superhydrophobic surface development. Soft Matter 4, 224 (2008).Google Scholar
45.Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008).CrossRefGoogle Scholar
46.Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754 (2000).Google Scholar
47.Feng, X.J. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).Google Scholar
48.Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 (1944).Google Scholar
49.Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
50.Furmidge, C.G.: Studies at phase interfaces. I. the sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309 (1962).CrossRefGoogle Scholar
51.Feng, L., Zhang, Y.A., Xi, J.M., Zhu, Y., Wang, N., Xia, F., and Jiang, L.: Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008).Google Scholar
52.Xin, B.W. and Hao, J.C.: Reversibly switchable wettability. Chem. Soc. Rev. 39, 769 (2010).Google Scholar
53.Zheng, Y., Gao, X., and Jiang, L.: Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3, 178 (2007).Google Scholar
54.Kim, T.-i and Suh, K.Y.: Unidirectional wetting and spreading on stooped polymer nanohairs. Soft Matter 5, 4131 (2009).Google Scholar
55.Rahmawan, Y., Kim, T.-i, Kim, S.J., Lee, K.-R., Moon, M.-W., and Suh, K.-Y.: Surface energy tunable nanohairy dry adhesive by broad ion beam irradiation. Soft Matter 8, 1673 (2012).Google Scholar
56.Yoon, H., Jeong, H.E., Kim, T.-i, Kang, T.J., Tahk, D., Char, K., and Suh, K.Y.: Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Today 4, 385 (2009).Google Scholar
57.Chu, K.-H., Xiao, R., and Wang, E.N.: Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413 (2010).Google Scholar
58.Chen, C.M. and Yang, S.: Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays. Adv. Mater. 26, 1283 (2014).CrossRefGoogle ScholarPubMed
59.Chung, J.Y., Youngblood, J.P. and Stafford, C.M.: Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3, 1163 (2007).CrossRefGoogle ScholarPubMed
60.Lin, P.-C. and Yang, S.: Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5, 1011 (2009).Google Scholar
61.Khare, K., Zhou, J., and Yang, S.: Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25, 12794 (2009).Google Scholar
62.Parker, A.R. and Lawrence, C.R.: Water capture by a desert beetle. Nature 414, 33 (2001).CrossRefGoogle ScholarPubMed
63.Zheng, Y., Li, J., Lee, E., and Yang, S.: Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Adv. 5, 30495 (2015). DOI: 10.1039/c5ra01469g.Google Scholar
64.Wu, Z.L., Wei, R., Buguin, A., Taulemesse, J.-M., Le Moigne, N., Bergeret, A., Wang, X., and Keller, P.: Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. ACS Appl. Mater. Interfaces 5, 7485 (2013).Google Scholar
65.Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S.N., and Arzt, E.: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. U. S. A. 102, 16293 (2005).Google Scholar
66.Jeong, H.E., Kwak, M.K., and Suh, K.Y.: Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmuir 26, 2223 (2010).CrossRefGoogle ScholarPubMed
67.Drotlef, D.M., Blümler, P., and del Campo, A.: Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26, 775 (2014).Google Scholar
68.Reddy, S., Arzt, E., and del Campo, A.: Bioinspired surfaces with switchable adhesion. Adv. Mater. 19, 3833 (2007).Google Scholar
69.Xie, T. and Xiao, X.C.: Self-peeling reversible dry adhesive system. Chem. Mater. 20, 2866 (2008).CrossRefGoogle Scholar
70.Wang, R. and Xie, T.: Shape memory- and hydrogen bonding-based strong reversible adhesive system. Langmuir 26, 2999 (2010).Google Scholar
71.De, M.G.: Velvet Type Fabric and Method of Producing Same Velcro Sa Soulie, U. S. Patent No. 2,717,437 (1955).Google Scholar
72.Epukas: Burdock—Arctium Tomentosum (Wikipedia Commons, 2008).Google Scholar
73.Freeman, A. and Golden, B.: Why didn't I Think of that: Bizarre Origins of Ingenious Inventions We Couldn't Live Without (John Wiley & Sons, Hoboken, New Jersey, 1997).Google Scholar
74.Chen, C.-M., Chiang, C.-L., Lai, C.-L., Xie, T., and Yang, S.: Buckling-based strong dry adhesives via interlocking. Adv. Funct. Mater. 23, 3813 (2013).CrossRefGoogle Scholar
75.Jin, C.R., Jagota, A., and Hui, C.Y.: Structure and energetics of dislocations at micro-structured complementary interfaces govern adhesion. Adv. Funct. Mater. 23, 3453 (2013).CrossRefGoogle Scholar
76.Ko, H., Lee, J., Schubert, B.E., Chueh, Y.L., Leu, P.W., Fearing, R.S., and Javey, A.: Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Lett. 9, 2054 (2009).Google Scholar
77.Rahmawan, Y., Kang, S.M., Lee, S.Y., Suh, K.-Y., and Yang, S.: Enhanced shear adhesion by mechanical interlocking of dual-scaled elastomeric micropillars with embedded silica particles. Macromol. React. Eng. 7, 616 (2013).Google Scholar
78.Shahsavan, H. and Zhao, B.X.: Conformal adhesion enhancement on biomimetic microstructured surfaces. Langmuir 27, 7732 (2011).Google Scholar
79.Singh, A.K., Bai, Y., Nadermann, N., Jagota, A., and Hui, C.Y.: Adhesion of microchannel-based complementary surfaces. Langmuir 28, 4213 (2012).Google Scholar
80.Vajpayee, S., Khare, K., Yang, S., Hui, C.-Y., and Jagota, A.: Adhesion selectivity using rippled surfaces. Adv. Funct. Mater. 21, 547 (2011).CrossRefGoogle Scholar
81.Pang, C., Kang, D., Kim, T.-i, and Suh, K.-Y.: Analysis of preload-dependent reversible mechanical interlocking using beetle-inspired wing locking device. Langmuir 28, 2181 (2011).Google Scholar
82.Pang, C., Kim, T.I., Bae, W.G., Kang, D., Kim, S.M., and Suh, K.Y.: Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Adv. Mater. 24, 475 (2012).Google Scholar
83.Pang, C., Lee, G.-Y., Kim, T.-i, Kim, S.M., Kim, H.N., Ahn, S.-H., and Suh, K.-Y.: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795 (2012).CrossRefGoogle ScholarPubMed
84.De Stefano, M., De Stefano, L., and Congestri, R.: Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattices Microstruct. 46, 64 (2009).Google Scholar
85.Kinoshita, S. and Yoshioka, S.: Structural colors in nature: the role of regularity and irregularity in the structure. Chem Phys Chem 6, 1442 (2005).Google Scholar
86.Vukusic, P. and Sambles, J.R.: Photonic structures in biology. Nature 424, 852 (2003).Google Scholar
87.Srinivasarao, M.: Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935 (1999).Google Scholar
88.Takeoka, Y.: Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 22, 23299 (2012).Google Scholar
89.Stavenga, D.G., Leertouwer, H.L., Marshall, N.J., and Osorio, D.: Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc. R. Soc. Lond. B, Biol. Sci. 278, 2098 (2011).Google Scholar
90.Holt, A.L., Sweeney, A.M., Johnsen, S., and Morse, D.E.: A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes. J. R. Soc. Interface 8, 1386 (2011).Google Scholar
91.Liu, F., Dong, B.Q., Liu, X.H., Zheng, Y.M., and Zi, J.: Structural color change in longhorn beetles Tmesisternus isabellae. Opt. Express 17, 16183 (2009).Google Scholar
92.Zylinski, S. and Johnsen, S.: Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937 (2011).Google Scholar
93.Izumi, M., Sweeney, A.M., DeMartini, D., Weaver, J.C., Powers, M.L., Tao, A., Silvas, T.V., Kramer, R.M., Crookes-Goodson, W.J., Mathger, L.M., Naik, R.R., Hanlon, R.T., and Morse, D.E.: Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid. J. R. Soc. Interface 7, 549 (2010).Google Scholar
94.Park, W. and Lee, J.-B.: Mechanically tunable photonic crystal structure. Appl. Phys. Lett. 85, 4845 (2004).Google Scholar
95.Kim, H., Ge, J., Kim, J., Choi, S., Lee, H., Park, W., Yin, Y., and Kwon, S.: Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534 (2009).Google Scholar
96.Zhu, X., Zhang, Y., Chandra, D., Cheng, S.-C., Kikkawa, J.M., and Yang, S.: Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation. Appl. Phys. Lett. 93, 161911 (2008).CrossRefGoogle Scholar
97.Arsenault, A.C., Clark, T.J., von Freymann, G., Cademartiri, L., Sapienza, R., Bertolotti, J., Vekris, E., Wong, S., Kitaev, V., and Manners, I.: From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179 (2006).Google Scholar
98.Chandra, D., Yang, S., Soshinsky, A.A., and Gambogi, R.J.: Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays. ACS Appl. Mater. Interfaces 1, 1698 (2009).Google Scholar
99.Lee, E., Zhang, M., Cho, Y., Cui, Y., Van der Spiegel, J., Engheta, N., and Yang, S.: Tilted pillars on wrinkled blastomers as a reversibly tunable optical window. Adv. Mater. 26, 4127 (2014).Google Scholar
100.Brennen, C. and Winet, H.: Fluid-mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339 (1977).Google Scholar
101.Urutseg, U. and Kohidai, L.: Difference of Beating Pattern of Flagellum and Cilia (Wikipedia Commons, 2011).Google Scholar
102.Daghlian, C.: Scanning Electron Microscope Image of Lung Trachea Epithelium (Wikipedia Commons, 2006).Google Scholar
103.Satir, P. and Sleigh, M.A.: The physiology of cilia and mucociliary interactions. Annu. Rev. Physiol. 52, 137 (1990).CrossRefGoogle ScholarPubMed
104.Sleigh, M.A., Blake, J.R., and Liron, N.: The propulsion of mucus by cilia. Am. Rev. Resp. Dis. 137, 726 (1988).Google Scholar
105.Evans, B.A., Shields, A.R., Carroll, R.L., Washburn, S., Falvo, M.R., and Superfine, R.: Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 1428 (2007).Google Scholar
106.Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., and Aizenberg, J.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487 (2007).Google Scholar
107.He, X., Aizenberg, M., Kuksenok, O., Zarzar, L.D., Shastri, A., Balazs, A.C., and Aizenberg, J.: Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214 (2012).Google Scholar
108.Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., and Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681 (2000).Google Scholar