Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T21:55:49.179Z Has data issue: false hasContentIssue false

Ab initio formation energies and time-dependent density functional theory excitation energies for nickel–nitrogen defect sites in diamond nanoparticles

Published online by Cambridge University Press:  19 March 2018

Nicholas W. Gothard*
Affiliation:
Bob Jones University, 1700 Wade Hampton Blvd, Greenville, SC 296142, USA NextGen Research, 200 F August Arbor Way, Greenville, SC 29605, USA
Douglas S. Dudis
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH 45433, USA
Luke J. Bissell
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH 45433, USA
*
Address all correspondence to Nicholas W. Gothard at nicholas.gothard.ctr@us.af.mil
Get access

Abstract

Diamond stands out in its ability to host hundreds of color centers, the most studied of which may be the nitrogen-vacancy and NE8 centers. The NE8 center, in particular, can generate single photons at an energy of 1.56 eV, but synthesis efforts are low yield and lack precise control of the defect structure and resulting optical properties. Complementing a bottom-up synthesis effort, we develop a rapid-screening computational approach for screening potential color centers in nanodiamond, focusing here on the nickel–nitrogen complexes. Formation and optical absorption energies are characterized with respect to defect stoichiometry and structure.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aharonovich, I., Englund, D., and Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016).Google Scholar
2.Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., and Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013).Google Scholar
3.Davies, G.: Dynamic Jahn-Teller distortions at trigonal optical centres in diamond. J. Phys. C: Solid State Phys. 12, 2551 (1979).CrossRefGoogle Scholar
4.Davies, G., and Hamer, M.F.: Optical studies of the 1.945 eV vibronic band in diamond. P. R. Soc. Lond. A. Mat. 348, 285 (1976).Google Scholar
5.Orwa, J., Greentree, A.D., Aharonovich, I., Alves, A.D.C., van Donkelaar, J., Stacey, A., and Prawer, S.: Fabrication of single optical centres in diamond—a review. J. Lumin. 130, 1646 (2010).Google Scholar
6.Nadolinny, V.A., Yelisseyev, A.P., Baker, J.M., Newton, M.E., Twitchen, D.J., Lawson, S.C., Yuryeva, O.P., and Feigelson, B.N.: A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with their optical properties. J. Phys. Condens. Matter 11, 7357 (1999).Google Scholar
7.Gaebel, T., Popa, I., Gruber, A., Domhan, M., Jelezko, F., and Wrachtrup, J.: Stable single-photon source in the near infrared. New J. Phys. 6, 98 (2004).Google Scholar
8.Aharonovich, I., Castello, S., Simpson, D.A., Su, C.H., Greentree, A.D., and Prawer, S.: Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076504 (2011).Google Scholar
9.Rabeau, J.R., Chin, Y.L., Prawer, S., Jelezko, F., and Gaebel, T.: Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 96, 131926 (2005).Google Scholar
10.Wu, E., Rabeau, J.R., Roger, G., Treussart, F., Zeng, H., Grangier, P., Prawer, S., and Roch, J-F.: Room temperature triggered single-photon source in the near infrared. New J. Phys. 9, 434 (2007).CrossRefGoogle Scholar
11.Aharonovich, I., Zhou, C., Orwa, J.O., Castelletto, S., Simpson, D., Greentree, A.D., Treussart, F., Roch, J-F., and Prawer, S.: Enhanced single-photon emission in the near infrared from a diamond color center. Phys. Rev. B 79, 235316 (2009).Google Scholar
12.Zyubin, A.S., Mebel, A.M., Change, H.C., and Lin, S.H.: Potential energy surfaces for the lowest excited states of the nitrogen-vacancy point defects in diamonds: a quantum chemical study. Chem. Phys. Lett. 462, 251 (2008).CrossRefGoogle Scholar
13.Gothard, N.W., Dudis, D.S., and Bissell, L.J.: Modeling of transition metal color centers in diamond. MRS Adv. 1, 1113 (2016).Google Scholar
14.Raty, J.Y., and Galli, G.: Optical properties and structure of nanodiamonds. J. Electroanal. Chem. 584, 12 (2005).Google Scholar
15.Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993).Google Scholar
16.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
17.Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623 (1994).Google Scholar
18.Adamo, C., and Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158 (1999).Google Scholar
19.Xu, X., Zhang, Q., Muller, R.P., and Goddard, W.A.: An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J. Chem. Phys. 122, 014105 (2004).Google Scholar
20.Neves, A.J., Pereira, R., Sobolev, N.A., Nazare, M.H., Gehlhoff, W., Naser, A., and Kanda, H.: New paramagnetic centers in annealed high-pressure synthetic diamond. Diam. Relat. Mater. 9, 1057 (2000).Google Scholar
21.Thiering, G., Londero, E., and Gali, A.: Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study. Nanoscale 6, 12018 (2014).Google Scholar